The Effect of O₂ and H₂O on oxidation in CO₂ at 700°-800°C

B. A. Pint, R. G. Brese and J. R. Keiser

Corrosion Science and Technology Group Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

Research sponsored by DOE, Office of Fossil Energy Office of Coal and Power R&D (R. Dennis, program manager; P. Burke, project monitor)

Acknowledgments

M. Howell - senior technician
M. Stephens, T. Lowe - specimen preparation/handling
T. Jordan - metallography
ORNL craft workers

Alloy coupons: Haynes International Special Metals Sandvik (Kanthal) Allegheny-Ludlum Sumitomo Metals Capstone Turbines

Research sponsored by: U. S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy

Direct-fired system of special interest

Closed loop of relatively pure CO₂ - primary HX (>700°C) - recuperators (<600°C) Also, waste heat recovery, bottoming cycle

Direct-fired (e.g. Allam cycle by Netpower) offers the promise of clean fossil energy: Power

In: natural gas $+ O_2$

Impurities: ~10%H₂O ~1%O₂, CH₄?, SO₂?

Out: CO₂ for EOR (enhanced oil recovery)

Different temperature targets

- Uncertainty about ranges for sCO₂ applications
- Fossil energy interest for power generation coal/natural gas: replace steam with closed cycle
- Direct-fired system may have very high T's: 1150°C combustor 750°C/300 bar turbine exit
- Primary HX operating at higher T than turbine inlet

Materials for sCO₂

Temperatures (600°-750+°C) and pressures: challenge for strength limited number of materials available ! Adv. Ultra-supercritical (steam) same T range

Limited materials choices:

- capability

- ASME Boiler & Pressure Vessel Code:

Materials are key to: reliability availability maintainability

A-USC materials for 700-760°C 100MPa/100,000h creep rupture lifetime needed

U.S. Advanced Ultra-Supercritical (steam) Consortium

Oxygen levels similar in steam/CO₂ Factsage calculations

Similar pO_2 levels in steam & CO_2 , higher at 200bar All oxides of interest are stable

Why worry about 740/282? 5-10kh at 800°C still form thin reaction product in air

General: C activity (ac) relatively low, favors oxidation McCoy 1965: Inconel 600 and 18Cr-8Ni steel internally carburized in <u>1bar</u> CO₂ High ac predicted - what about NiCr in sCO₂ + 10%H₂O? Want to study sCO_2 impurity effects Goal: study effect of $H_2O \& O_2$ on sCO_2 corrosion BUT, we can't pump impurities into sCO_2 gas AND can't monitor H_2O or O_2 level at pressure

2016 project goals:

build $H_2O \& O_2$ detection system at pressure build dual pumping system for incorporating $H_2O \& O_2$ in sCO₂

2017 goals: operate system

Several testing options

High temperature exposure in controlled gas environment

automated cyclic rigs

3-zone tube furnace

282 autoclave

1 bar 500°-1200°C 0.1-24 h cycles

1 bar 500°-1200°C 100-500 h cycles

300 bar 200°-800°C 500 h cycles

Some impurity results while we wait

Create a 1 bar baseline

500 h exposures

dry air, $CO_2(99.995\%)$, $CO_2+0.15\%O_2$, $CO_2+10\%H_2O_2$

Coupons 11 x 19 x 1.5mm

600 grit SiC finish

Ultrasonically cleaned in acetone & methanol Held in alumina boat in alumina reaction tube 100 cc/min flow rate, heat to temperature in argon Mass change

Mettler Toledo model XP205 balance

±0.04 mg (±0.01 mg/cm²) accuracy

Post exposure characterization:

Light microscopy (Cu-plating to protect scale)

Wide range of alloys examined

Alloy	Fe	Ni	Cr	ΑΙ	Other
Ferritic	ch	rom	ia-fo	ormi	ng steels
Gr.91 (S90901)	89.7	0.1	8.3	<	1Mo,0.3Mn,0.1Si, 0.08C
FeCrMo (S44735)	72.6	0.1	25.8	<	1.0Mo,0.2Si,0.1V
Fe-12.5Cr	86.7	<	12.4	0.01	0.6Mn,0.2Si,0.005Y
Fe-15Cr	84.1	<	14.9	0.02	0.6Mn,0.3Si,0.012Y
Fe-17.5Cr	81.6	<	17.5	0.02	0.6Mn,0.3Si,0.011Y
Fe-20Cr	79.0	<	20.0	0.02	0.7Mn,0.3Si,0.010Y
Fe-22.5Cr	76.6	<	22.5	0.01	0.2Mn,0.7Si,0.002Y
Fe-25Cr	74.0	<	25.0	0.01	0.7Mn,0.3Si,0.002Y

Austenitic Fe-base chromia-forming steels

347HFG (S34710)	66.0	11.8	18.6	0.01	1.5Mn,0.8Nb,0.4Si,0.2Mo,0.2Co,0.09C
310HCbN (S31042)	51.3	20.3	25.5	<	0.3Co,0.4Nb,1.2Mn,0.3Si,0.3N,0.05C

Fe-base alumina-forming alloys

FeCrAlMo	69.2	0.2	21.1	5.0	0.2Hf,0.1Mn,2.8Mo,0.6Si,0.3Y,0.1Zr
AFA OC4	49.1	25.2	13.9	3.5	2.5Nb,2W,1.9Mn,2Mo,0.5Cu,0.2Si,0.1C
CAFA	48.4	25.2	14.6	3.5	1.0Nb,1.3W,2Mn,1.9Mo,0.6Cu,0.9Si,0.4C
DAFA	44.5	33.3	14.0	2.7	2.8Nb,1.7Ti,0.2Mn,0.4Si,0.1C

Ni-base chromia-forming alloys

625 (N06625)	4.0	60.6	21.7	0.09	9.4Mo,3.6Nb,0.2Ti,0.2Si,0.1Mn
230 (N06230)	1.5	60.5	22.6	0.3	12.3W,1.4Mo,0.5Mn,0.4Si
CCA617 (N06617)	0.6	55.9	21.6	1.3	11.3Co,8.6Mo,0.4Ti,0.1Si
282 (N07208)	0.2	58.0	19.3	1.5	10.3Co,8.3Mo,0.06Si,2.2Ti,0.1Mn
740 (N07740)	1.9	48.2	23.4	0.8	20.2Co,2.1Nb,2.0Ti,0.3Mn,0.5Si

Ni-base alumina-forming alloys

< indicates less than 0.01%								
247 (N07247)	0.07	59.5	8.5	5.7	9.8Co,9.9W,0.7Mo,3.1Ta,1.0Ti,1.4Hf			
214 (N07214)	3.5	75.9	15.6	4.3	0.2Mn,0.1Si,0.02Zr			

Baseline created at 700°C 1bar

10 representative alloys were focus of metallography 1bar: dry air, CO_2 , $CO_2+0.15O_2$, $CO_2+10\%H_2O$

Similar H₂O effect observed before Similar alloys evaluated for oxy-firing (gas only) 1bar: dry air, 100%H₂O, Ar+50%(CO₂+0.15O₂), 50%(CO₂+0.15O₂)+50%H₂O

Pint and Thompson, Mater. Corros. 2014

Especially H₂O caused thick oxide

Light microscopy after 500h exposures at 700°C

Thinner oxides formed on others Light microscopy after 500h exposures at 700°C

750°C 1bar: baseline + impurities 1bar: dry air, CO₂, CO₂+0.15O₂, CO₂+10%H₂O Consistently higher mass gains for alloy 282

Only Gr.91 formed thick oxide

Light microscopy after 500h exposures at 750°C

Thinner oxides formed on others Light microscopy after 500h exposures at 750°C

800°C 1bar: different behavior 1bar: dry air, CO₂, CO₂+10%H₂O Consistently higher mass gains for alloy 282

$Gr.91 + H_2O$: only thick oxide

Light microscopy 500h at 800°C

800°C: wide range of Al₂O₃-former

AFA: alumina-forming austenitic steel wrought AFA (OC4) performed best

H₂O affected AFA variants Light microscopy: 500h, 800°C, CO₂+10%H₂O

Hoping to find critical Cr content

Model Fe-Cr alloys with Mn,Si,Y additions

Not a strong affect of environment on performance

Thin oxides formed in most locations

Light microscopy after 500h exposures at 800°C

Nodule formation dominated mass change

Other work in 2016

#1 Built longer 282 autoclave

#2 SunShot: sCO₂ lifetime model

- 1 bar CO₂, 10-h cycles to simulate solar duty cycle
- 300 bar CO₂, 500-h cycles to 1kh at 700°-800°C

Summary

Completed 500h 1 bar CO₂ tests at 700°-800°C dry air, CO_2 , $CO_2+0.15\%O_2$ and $CO_2+10\%H_2O$ Some information on H₂O and O₂ for direct-fired Wide range of alloys exposed 700°-750°C H₂O had most negative effect similar result observed in other studies thick oxide formed on Fe-9Cr specimens 347HFG thick oxide + spall only at 700°C thin oxides on higher-alloyed materials 800°C

only thick oxide formed on Gr.91 with H₂O additional alumina-forming alloys evaluated Fe-Cr model alloys did not show clear effect

questions?

Thoughts

More characterization needed of current results Better understand some unusual results

Concern:

Degradation by C penetration through Cr₂O₃

H. McCoy 1965 at 1bar

D. J. Young et al. (2011-2014) at 1bar Need to evaluate longer times + ex-situ ductility Al_2O_3 thought to be better barrier to C ingress Pre-oxidation may assist in Al_2O_3 formation Al-containing alloys can be difficult to fabricate

1st: 20MPa runs, most low gains

10 representative alloys were focus of metallography

Ni-base alloys: thin scales

All thin Cr-rich or Al-rich scales in 20 MPa sCO₂

750°C: initial tensile experiments showed little effect of sCO₂

25mm tensile bars exposed at each condition Tensile test at room temperature: 10⁻³/s strain rate

Why use supercritical CO₂?

Potential supercritical CO_2 (s CO_2) advantages:

load

- no phase changes
- high efficiency
- more compact turbine
- short heat up
- less complex

- lower cost (?)

Source: MIT report

Direct- and indirect-fired sCO₂ Brayton cycles for:

- fossil energy (coal or natural gas) FY13- FY16+
- concentrated solar power FY16-FY18
- nuclear (paired with sodium for safety)
- waste heat recovery/bottoming cycle

Relatively little prior sCO₂ work Especially at >650°C and 300 bar

Several groups active in the past 10 years U. Wisconsin group has published the most results Temperature/pressure limited by autoclave design

ORNL designed new sCO₂ rig

- Haynes 282 autoclave 152mm (6") dia.
- Hight purity CO₂ 99.995%, <5 ppm H₂O 1ml/min flow
- 10x20x1.5mm coupons ORNL sCO₂ rig:

shield

pipefitter

fluid in

furnace

Many possible applications

Smaller fossil fuel turbines

7MW Echogen (WHR)

200 bar mass change by %Cr

~30 alloys exposed in first 750°C experiment Alumina-forming alloys typically lower mass than chromia-forming alloys

Higher mass gain for alloy 282 specimen

Little effect of pressure observed

500h exposures at 750°C

Core group of 12 alloys evaluated

282: deeper Cr depletion in $sCO_2(?)$

EPMA depth profiles beneath scale at 750°C

Looking for internal carburization

High a_c predicted, McCoy (1965) observed in 1bar CO₂

Typical Fe-rich oxide on Gr.91

However, inner/outer ratio appears to change with P Outer Fe_2O_3/Fe_3O_4 layer Inner $(Fe,Cr)_3O_4$ layer Grade 91: Fe-9Cr-1Mo

Some thin-protective Cr-rich scale at 1bar

light microscopy of polished cross-sections

347HFG: protective at 750°C

Thick duplex oxide formed at 650°C in sCO₂

Only a few nodules formed at 700°-750°C

- faster Cr diffusion in alloy can affect behavior
- could change after longer exposures

light microscopy of polished cross-sections

Hf-rich carbide oxidized in sCO_2

EPMA shows carbide transformed to oxide at 750°C

247: Ni-8Cr-6Al-10Co-10W-3Ta-1.4Hf

