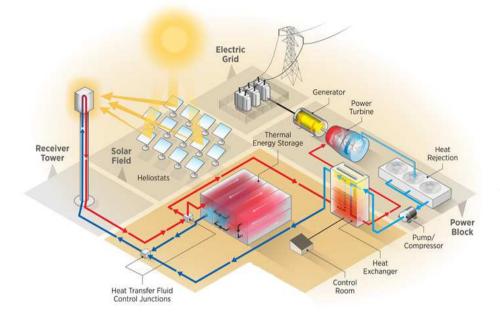
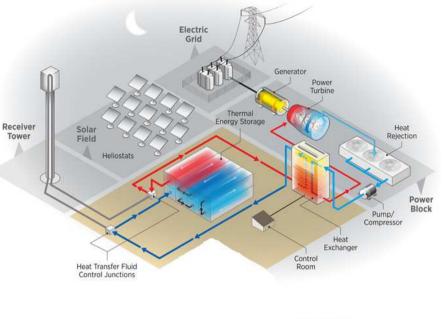


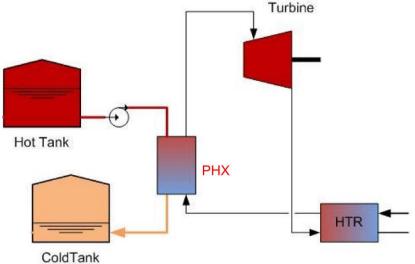
UCLA

Off-design Performance of the Recompression sCO2 Cycle for CSP Applications


5th International Supercritical CO2 Power Cycles Symposium

Ty Neises - NREL Louis Tse - UCLA


March 30, 2016

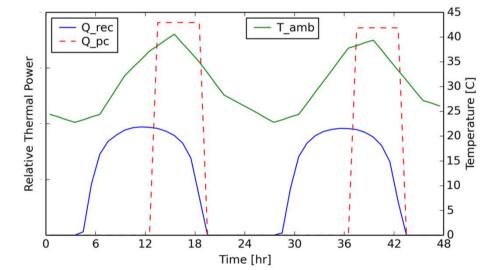

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Concentrating Solar Power Overview

- Concentrated sunlight heats a fluid (e.g. molten salt) that delivers thermal power to cycle
- Hot fluid is stored and dispatched to cycle to maximize revenue
- Storage decouples electricity generation from sunlight; CSP acts as dispatchable generator

sCO2 Cycle Attributes and Areas of Focus

Attributes


- Efficiency at CSP temps (550 750 C)
- Performance at smaller capacity (10-50 MWe)

Enables smaller, cheaper, more efficient CSP systems

• Potentially allows for more favorable financing options

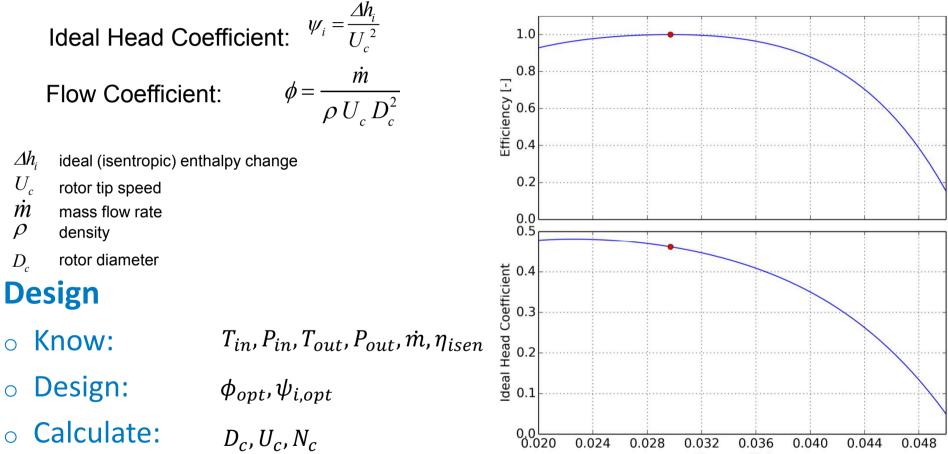
CSP Areas of Focus

- Performance & control of dry-cooled cycles in desert climates
 - Cycle operation over varying (hot) compressor inlet temps
- ΔT over primary heat input & thermal storage: storage cost
 - Off-design & part-load operation impact on storage capacity
- Dispatchable generation
 - Part-load operation, ramping, and standby

Modeling Overview

Component Models:

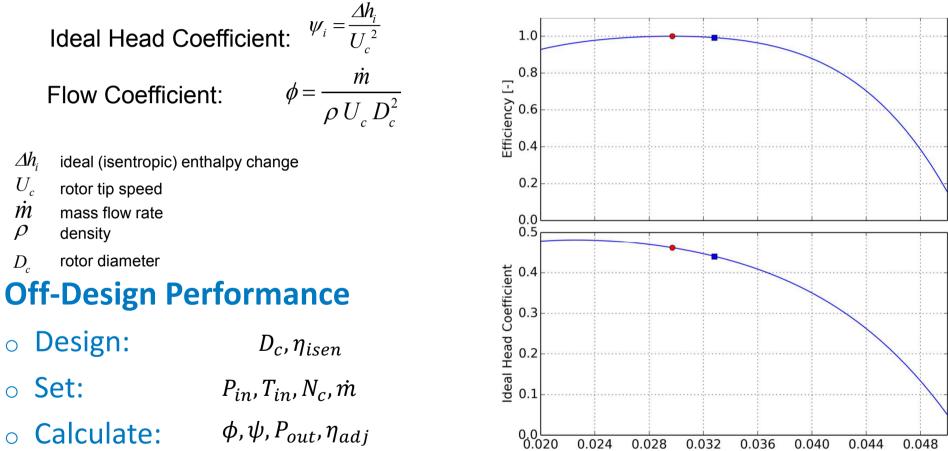
- Counterflow HX
- Compressor
- Turbine


Simplifications:

- Pre-cooler can achieve constant 15°C difference between comp inlet and ambient temperatures
 - Fan parasitics ignored
- Generator/motor efficiencies included in turbomachinery isentropic efficiencies

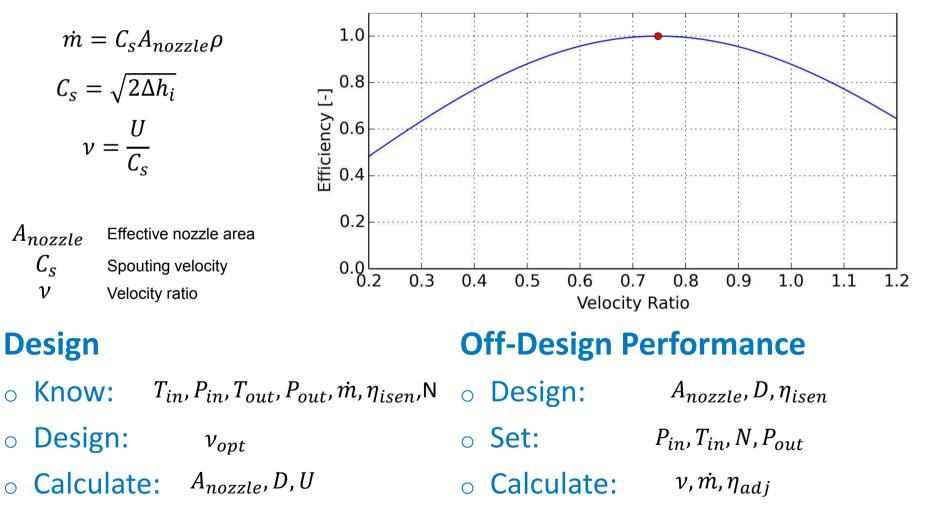
NATIONAL RENEWABLE ENERGY LABORATORY UCLA

Compressor Design


Characterize performance using dimensionless parameters and performance curves fitted from SNL radial compressor data:

Flow coefficient

Compressor Off-Design Performance


Characterize performance using dimensionless parameters and performance curves fitted from SNL radial compressor data:

Flow coefficient

Turbine Modeling

Characterize performance using dimensionless parameters and modeled efficiency curves (Wright et al. 2011):

Counterflow Heat Exchanger Modeling

Design

- Know design performance:
 - inlet and outlet states
 - mass flow rates
- $_{\odot}~$ Solve for required UA
- Example: PHX, CR = 1

$$\dot{q}_{max} = \left(\dot{m}cp\right)_{CO_2,des} \cdot \left(T_{HTF,hot} - T_{CO_2,PHX,in}\right)$$
$$\epsilon = \frac{\dot{q}_{actual}}{\dot{q}_{max}}$$

$$UA_{des} = \frac{\varepsilon}{1 - \varepsilon} (\dot{m}cp)_{CO_2, des}$$

Off-Design

- Know hot and cold inlet conditions
- Scale conductance for offdesign mass flow rate
- Solve for outlet conditions

$$U = U_{des} \left(\frac{1}{2} \left(\frac{\dot{m}_{CO_2}}{\dot{m}_{CO_2,des}} + \frac{\dot{m}_{HTF}}{\dot{m}_{HTF,des}} \right) \right)^{0.8}$$
$$C_R = \frac{\dot{C}_{min}}{\dot{C}_{max}} = \frac{\min\left(\left[\left(\dot{m}c_p \right)_{CO_2} \right], \left[\left(\dot{m}c_p \right)_{HTF} \right] \right)}{\max\left(\left[\left(\dot{m}c_p \right)_{CO_2} \right], \left[\left(\dot{m}c_p \right)_{HTF} \right] \right)} \right)$$

$$NTU = \frac{UA_{des}}{\dot{C}_{min}}$$

Design Model

1) Find smallest total recuperator conductance resulting in design point efficiency

• Optimize compressor inlet pressure, pressure ratio, and recompression fraction

Design Point Paramete	Optimized Design Point Parameters					
Net Power Output	10 MW	Comp. Inlet Pressure	9.00	MPa		
Thermal Efficiency (no cooling)	0.48 -	Comp. Pressure Ratio	2.74	-		
Turb. Inlet Temp	690 °C	Recompression Fraction 0.18				
Turb. Isentropic Efficiency	0.93 -	Design Point Solution Results				
Turb. Shaft Speed (fixed)	3600 rpm	Recuperator Conductance	1375	kW/K		
Main Comp. Inlet Temp	45 °C	Main Comp. Shaft Speed	33294	rpm		
Comp. Isentropic Efficiency	0.89 -	Turb. Rotor Diameter	2.32	m		
Maximum Pressure	25 MPa	CO2 Mass Flow Rate	82.0	kg/s		
Neglecting Pressure Drops		PHX CO2 Inlet Temperature	505	°C		

Design Model

1) Find smallest total recuperator conductance resulting in design point efficiency

• Optimize compressor inlet pressure, pressure ratio, and recompression fraction

Design Point Paramet	Optimized Design Point	Optimized Design Point Parameters				
Net Power Output	10 MW	Comp. Inlet Pressure	9.00	MPa		
Thermal Efficiency (no cooling)	0.48 -	Comp. Pressure Ratio	2.74	-		
Turb. Inlet Temp	690 °C	Recompression Fraction 0.18				
Turb. Isentropic Efficiency	0.93 -	Design Point Solution Results				
Turb. Shaft Speed (fixed)	3600 rpm	Recuperator Conductance	1375	kW/K		
Main Comp. Inlet Temp	45 °C	Main Comp. Shaft Speed	33294	rpm		
Comp. Isentropic Efficiency	0.89 -	Turb. Rotor Diameter	2.32	m		
Maximum Pressure	25 MPa	CO2 Mass Flow Rate	82.0	kg/s		
Neglecting Pressure Drops		PHX CO2 Inlet Temperature	505	°C		

2) Use design cycle solution and PHX parameters to find PHX design

Required Design Point Solution Results	Design Point Pa	arameters	Design Point Solution Results			
PHX CO2 Inlet Temperature	HTF Inlet Temp	700 °C	PHX Conductance	2.9×10 ⁵	kW/K	
Turb. Inlet Temp	Capacitance ratio	1	PHX NTU	9.39		
CO2 Mass Flow Rate			HTF Mass Flow Rate	72.4	kg/s	

Off-Design Model

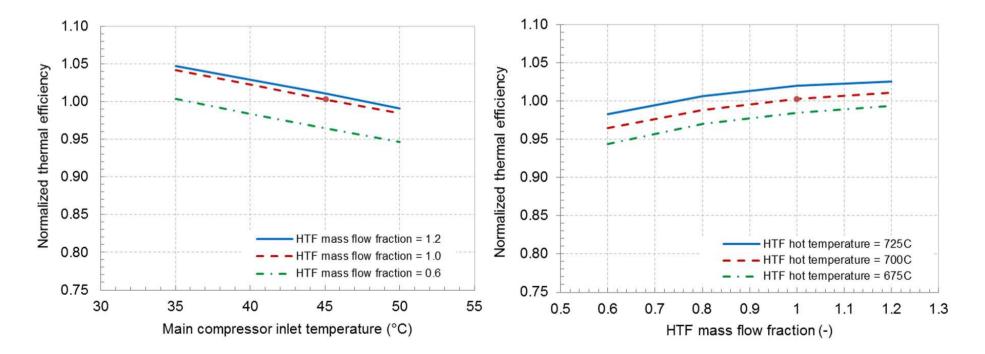
Off-Design Conditions: 1) Ambient Temperature, 2) HTF mass flow rate, 3) HTF Temp

1) Given a turbine inlet temperature, optimize compressor shaft speed, compressor

inlet temperature, and recompression fraction to maximize efficiency

Required Design Point Solution Results	Off-Design Parameters		Off-Design Results		
Recuperator Conductance	Turb. Inlet Temp	687 °C	Net Power Output	9.30	MW
Turb Isen Efficiency	Comp. Inlet Temp	50 °C	Thermal Efficiency	0.47	-
Turb. Rotor Diameter	Optimized Off-Des	sign Parameters	PHX CO2 Inlet Temp.	510	°C
Comp. Isen Efficiency (2)	Main Compressor Shaft Speed	36523 rpm	Pressure Ratio	2.73	-
Comp. Rotor Diameter (2)	Main Compressor Inlet Pressure	9.0 MPa	CO2 Mass Flow Rate	82.9	kg/s
Maximum Pressure	Recomp. Fraction	0.17 -			
Component Pressure					
Drops					

Off-Design Model

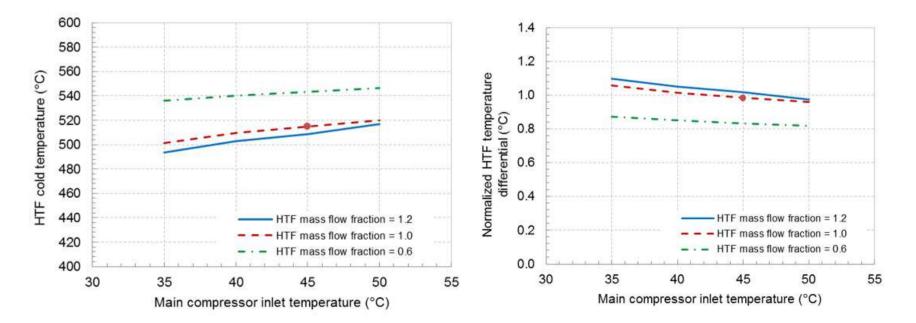

Iterate to find turbine inlet temperature that converged cycle and PHX models

Required Design Point Solution Results	Off-Design Parameters			Off-Design Results		
Recuperator Conductance	Turb. Inlet Temp	687 °C		Net Power Output	9.30	MW
Turb Isen Efficiency	Comp. Inle emp	50 °C		Thermal Efficiency	0.47	-
Turb. Rotor Diameter	Optimized off-De	esign Paramet	ers	PHX CO2 Inlet Temp	510	°C
Comp. Isen Efficiency (2)	Main Complessor Shaft Speed	36523 rpm		Pressure Ratio	2.73	-
Comp. Rotor Diameter (2)	Main Compressor	9.0 MPa		CO2 Mass Flow Rate	82.9	kg/s
Maximum Pressure	Recomp. Fraction	0.17 -				
Component Pressure						
Drops						
Required PHX DesignRequired Cycle Off-DesignPoint Solution ResultSolution Results				Off-Design Results	6	
PHX Conductance	PHX CO2 Inlet Temp.	510 °C	Turt	o. Inlet Temp 687	′ °C	
HTF Mass Flow Rate	CO2 Mass Flow Rate	82.9 kg/s	HTF	Return Temp 520) °C	
	Off-Design Parameters					
	HTF Inlet Temp	700 °C				
L RENEWABLE ENERGY LABORATORY	UCLA					12

NATIONA

Off-Design Cycle Efficiency

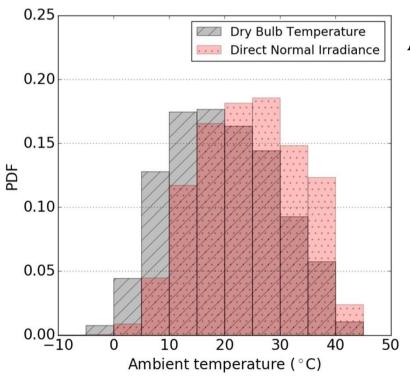
- Trends compare well against Dyreby's "black box" heat input model
- HTF mass flow > 1 results in turbine temps > design
 - Will add constraint in future analyses
- High efficiencies at part load
 - Inventory control & improved regeneration



Off-Design TES Temperature Difference

 $Energy_{TES} = mass * specific heat * (T_{hot} - T_{cold})$

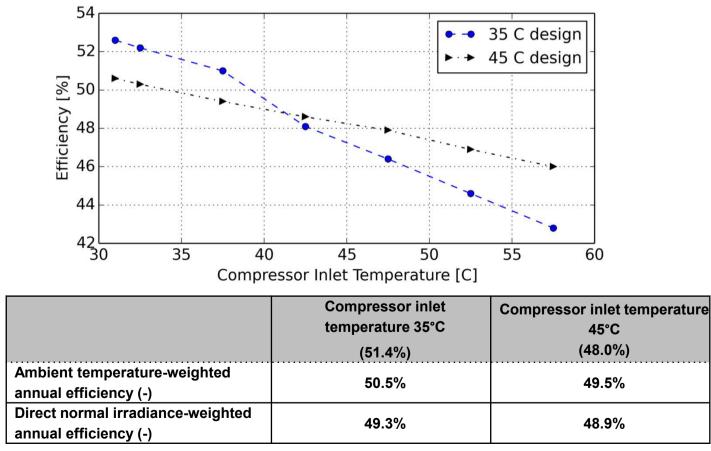
For sensible heat storage:


- The required mass of HTF is proportional to the hot and cold tank temperatures.
- All else equal, a cycle with a larger temperature difference is preferred to a cycle with a smaller temperature difference

Annual Operating Ambient Temperatures

How might the design compressor inlet temperature affect annual performance Scenarios

- 1. Cycle operates every hour of year (baseload)
- 2. Cycle generates power proportionally to available DNI (CSP w/ small TES)



Annual Average Ambient Temperature = 19.5°C

Annual DNI – weighted Ambient Temp
=
$$\sum_{i=1}^{8760} T_{amb,i} * \frac{DNI_i}{\sum_{j=1}^{8760} DNI_j} = 24.3^{\circ}\text{C}$$

Annual Efficiency Estimates

- Design cycles for three compressor inlet temperatures
- Calculate off-design efficiencies at each PDF bin (assuming design point HTF mass flow rate & temperature)
- Don't allow compressor inlet temperatures colder than critical temperature

Conclusions

- Off-design cycle performance can affect the performance of the heat source
 - Reduced thermal energy storage capacity
- Cycle design should consider likely cycle *operating* conditions, especially ambient temperature *at generation*
 - Electricity peak pricing would drive "average" annual temperature even higher than DNI-weighted
- Next steps:
 - Air-cooler design and operation
 - Cost models as function of design
 - Economic analysis

• Off-design optimization can be difficult

- Lot's of infeasible points, especially at large HTF mass flow rates & hot ambient temps
- Develop proxy model to screen solution space and generate guess values?

Thank You!

Questions?

NATIONAL RENEWABLE ENERGY LABORATORY UCLA