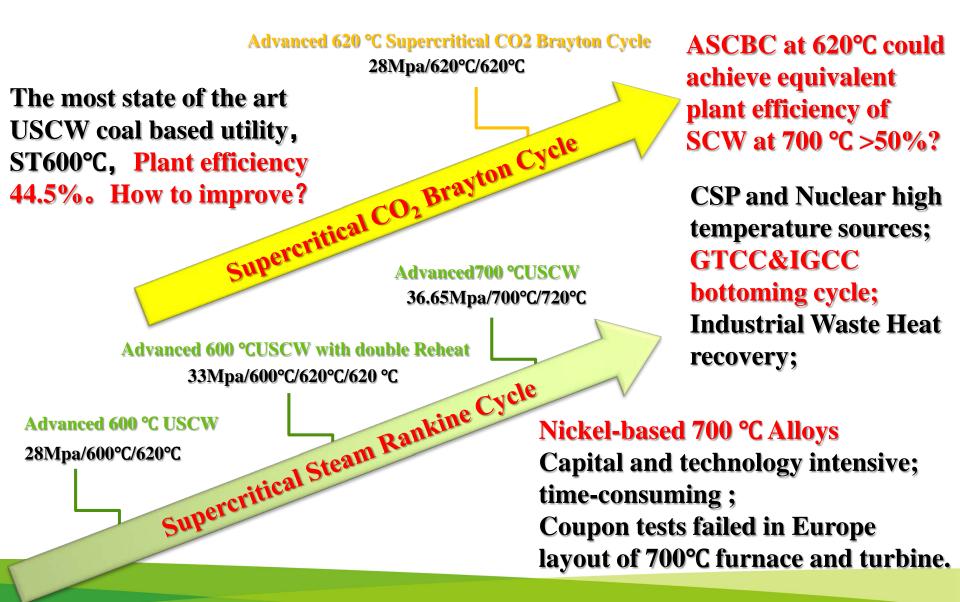


Preliminary design study on a Multi-Megawatts Fossil-based Supercritical CO₂ Recompression and Reheat Integral Test Facility

Hongzhi Li Xi'an Thermal Power Research Institute State Key Laboratory of Coal-Based Clean Energy

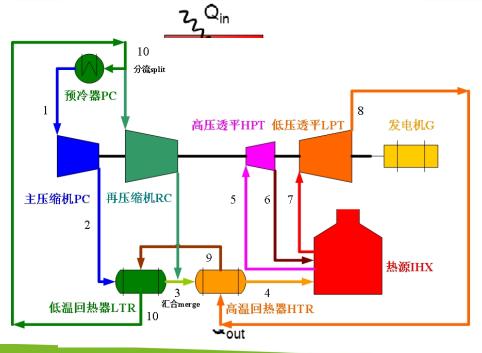
2016.03

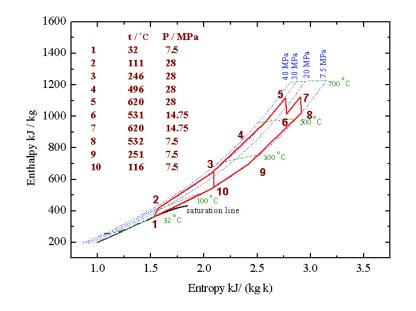


Motivation

- What and Why is SCO₂ Brayton Cycle
- Existing and Ongoing Integral Test Facility
- TPRI 5MWe Indirect SCO₂ Integral Test Facility
 - Turbomachinery Preliminary Design
- Heat Exchangers Preliminary Design
- Boiler Preliminary Design
- Conclusions

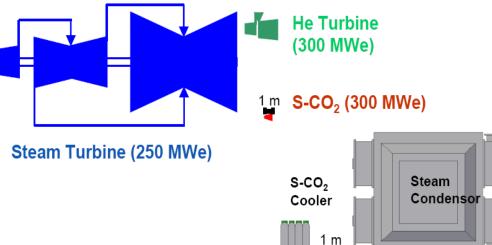
Motivation

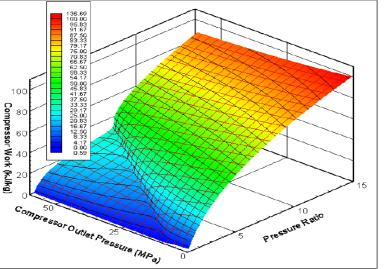




What is SCO₂-Brayton Cycle?

	Steam Rankine Cycle	IG Brayton Cycle	SCO ₂ Brayton Cycle	
Compress	Pump	Compressor	Compressor	
Heating	Boiler	Boiler Combustion Chamber		
Expand	d Turbine Gas turbine		SCO ₂ turbine	
Cooling	Condenser	Ambiance	Precooler / Recuperator	





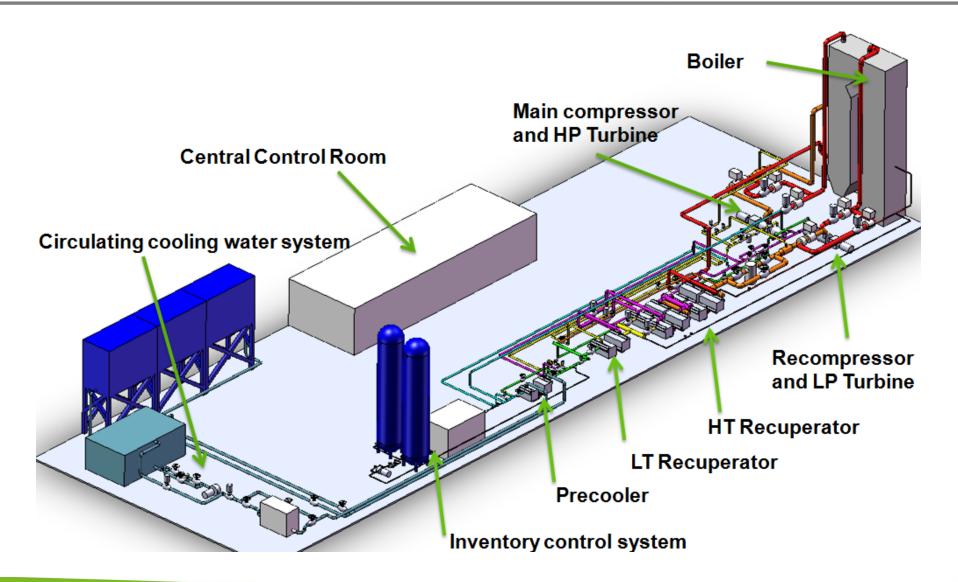
Why SCO₂?

- SCO₂ is an attractive working fluid
- moderate critical parameters 7.29MPa, 30.98°C; accommodate a large range of temperatures;
- combined liquid and gas properties large density with relative low viscosity; condensed gas;
- less corrosive and environmentally friendly no need for water quality control and treatment support;
- higher power density significantly reduced component size, lace Steam ?
- almost incompressible near critical point reduced compressor work;

Why SCO₂?

SCO₂ BC is a high efficiency and cost effective cycle

- high efficiency at moderate temperature Thermal efficiency > 50% possible @ 28MPa / 620 °C / 620 °C;
- > no phase change simple cycle layout and small plant footprint;
- Iow pressure ratio and high power density small turbomachinery;
- High recuperative

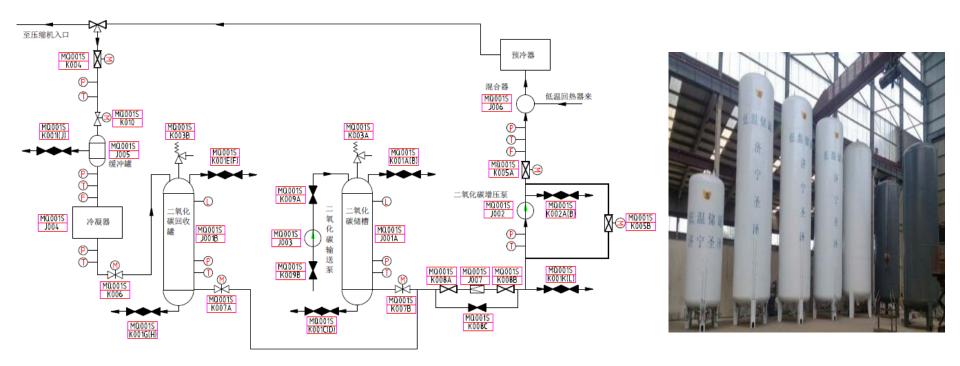

~2/3 of the cycle energy is recuperative heat;

1	Sandia National Lab	7.68-13.84MPa; 32°C-342°C, 240kWe; 31.5%; 50000RPM; turbine efficiency 68%
2	Bechtel Marine Propulsion	9.03-13.5MPa; 36°C-299°C; 100kWe; cycle efficiency 14.7%; 60000RPM
3	Echogen	Waste heat 7MWe; TIT 275°C
4	Tokyo Institute Technology	30kWe small Test loop
5	DOE & NREL & SNL & BNL & UW & Echogen & EPRI & AB SOLAR	CSP 10MWe;8-28MPa;45-700°C;
6	SWRI & GE & Thar Energy	1MWe simple loop;
7	KAIST/KAERI	33.2°C; 500°C; 7.78-20MPa
8	EDF/GE	20MWe coal based pilot plant
9	NetPower & Toshiba	50MWe Allam cycle

TPRI 5MWe Integral Test Facility TPRI

System design

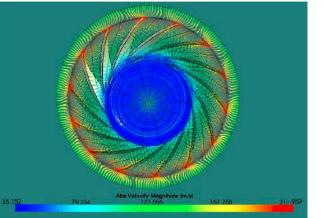
5

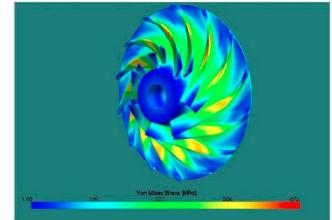

SR to Recompressor	/	0.384	0.384 HPT work		4.687
SR to Economizer	/	0.08 LPT work		MW	4.75
HPT-IP	MPa	20	MC work	MW	1.588
HPT-IT	°C	600	RC work	MW	2.643
HP expansion ratio	/	1.527	,		14.557
LPT-IP	MPa	12.69			12.011
LPT-IT	°C	600	HTR duty	MW	34.586
LP expansion ratio	/	1.527	PC duty	MW	9.351
MC-IP	MPa	7.6	Net capacity		5
MC-IT	°C	32	Boiler efficiency	%	94
MC PR	/	2.816	MC efficiency	%	70
RC-IP	MPa	7.71	RC efficiency	%	72
RC-IT	°C	80.085			82
RC PR	/	2.737			80
Mass Flow Rate	t/h	304.37	Cycle gross efficiency	%	32.29

ELCON.

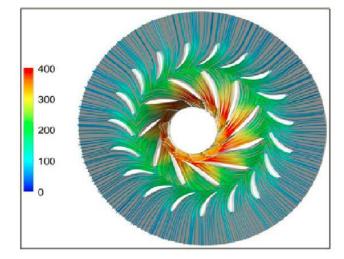
Cryogenic storage for expansion tanks design widely used in industry P=2.16MPa; T=-30°C; V=12m³

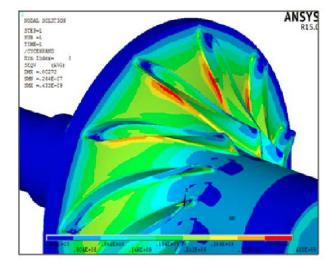
Turbomachinery


_		<i>,</i> ,	, ,			
	ζą	Unit₽	MC⊷	RC	HPT₽	LPT ₂
_	mass flow rate.	kg/s₽	52.08 ₽	32.47 ₽	<mark>84.55</mark> ₽	84.55 ₂ 2
◀ _	work⊷	MM∾	1.58₽	2.64	4.68 ₽	4.75~ ~
	impeller diameter.	mm₽	140.	200*	120*	2000
	inlet pressure.	MPa ₽	7.6⊷	7.7₽	20⊷	12.7.
	inlet temperature.	°C *3	32.	<mark>80</mark> ₽	<mark>600</mark> ₽	600÷ ²
	inlet density.	kg/m³.,	557.5₽	152.4.	116.7 ₊ ^₀	75.26₽
	outlet pressure.	MPa₽	21.4~	21.1.	13.09*	8.31~
	outlet temperature.	°C *3	70.1*	187.3 _*	55 1 .3₊	551.1 ₽
	outlet density.	kg/m³₊	684.6 * ²	288.58	82.4.	52.76 ₽
_	shaft speed.	rpm₽	30000+3	30000 ₽	30000 ₄ 3	30000¢ v
_	isentropic efficiency.	‰⊷	70+3	72₊≀	80₽	82.


Turbomachinery

Compressor: Titanium alloy


Max Von Mises stress is 622MPa



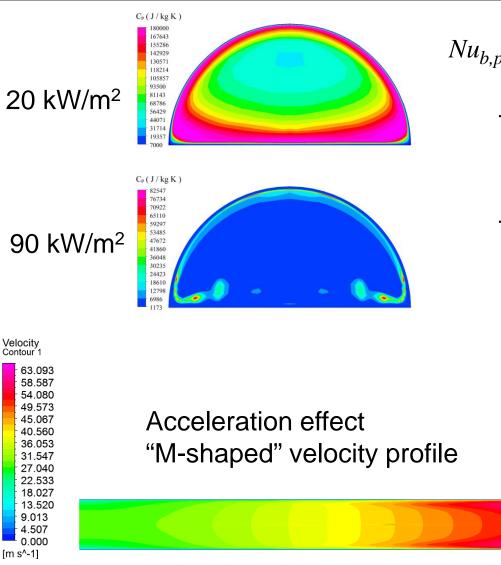
Turbine: Inconel 718

Max Von Mises stress is 433MPa

Recuperators and Precooler

 \rightarrow

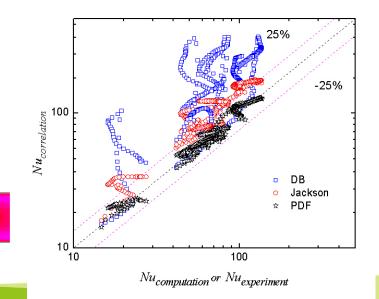
 \triangleright


-		HT R	HT Recup		LT Recup		С
		Hot	Cold	Hot	Cold	Hot	Cold
heat duty	MW	34	.58	12	.01	9.	5
heat transfer area	m²	2460		837.4		360.59	
unit size	m	0.6×0.	6×1.35	0.6×0.	6×1.35	0.6×0.6	5×1.35
number of unit	/	8	8	1	2	1	_
U	W/(m²K)	97	8.6	121	L5.4	246	3.6
average DT	К	15.84 1.4		12.31		25.83	
Volume	m3			0.	0.52		L4
Weight	t	3	38		10.6		25
WF		CO2	CO2	CO2	CO2	CO2	H2O
MFR	kg/s	84.55	77.78	84.55	52.08	52.08	110
PI	MPa	8.31	21.1	8.01	21.4	7.71	0.2
РО	MPa	8.01	20.8	7.71	21.1	7.6	0.11
TI	°C	551.1	187.3	197.4	70.1	80.1	20
ТО	°C	197.4	540.1	80.1	187.3	32	32.5

SCO₂ heat transfer model

TPRI

 $\sum^{p} \left(\frac{1}{C} \right)^{p}$


q

b, pdf = C	$df = C R e_{b,pdf}^{m}$		$\left(rac{ ho_{w,po}}{ ho_{b,pd}} ight)$	$\left \frac{tf}{tf}\right = \left(\frac{1}{2}\right)$	$\left(\frac{Cp_{pdf}}{Cp_{b,pdf}}\right)$	
	С	m	n	р	q	
heating	0.0281	0.729	0.675	0.466	0.532	
cooling	0.0937	0.627	0.608	0.203	0.522	

1

$$\phi(T) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(T-\overline{T})^2}{2\sigma^2}}$$

Boiler

	-	FWSH	FWRH	SH	RH	ECO	APH
Heat Duty	kW	4809	3983	1590	989	3005	1746
Heating surface Area	m2	39.6	32.8	63	89	315	1403
flue gas IT	°C			1012.7	854.6	733.8	351.1
flue gas OT	°C			854.6	733.8	351.1	118.7
CO2/air IT	°C	538.8	551.3	584.3	589.7	193.5	25
CO2/air OT	°C	584.3	589.7	600	600	538.7	290.8
flue gas velocity	m/s			14.89	13.27	12.57	10.7
CO2 velocity	m/s			23.67	19.78	4.95	5.83 🖑
LMTD	°C			334.4	194.6	175.7	63.2
tube outside diameter	m	25	25	42	42	38	38
tube thickness	m	5	4	5	4	4	2
Outside wall temperature	°C	621	611	605	590	550	
volume	m3	0.212	0.225	0.384	0.612	1.865	/
weight	t	2.939	2.045	2.165	2.512	8.793	21.89

Conclusions

- SCO₂ power conversion technology has been extensively investigated around the world due to its compact components, simple plant layouts and the potential to significantly increase the efficiency.
- The existing laboratory scale integral demonstration test loops well verified the concept of the SCO₂ power cycle. However there are numerous hurdles need to address before the commercial scale achieve the efficiency benefits and reliable operation.
- TPRI are planning to build a SCO₂ R&R power cycle test loop with larger capacity and higher parameters aiming at the utility scale coal-based power plant.
- The initial system modeling and scaling as well as the key components preliminary design has been made for 5MWe ITF. The whole project was expected to accomplish at the end of 2017.

Thanks for your attention!

Hongzhi Li, PhD. R&D Dept. Xi'an Thermal Power Research Institute State Key Laboratory of Coal-Based Clean Energy Phone: +86 29 82001207 +86 18691565600 Fax: +86 29 82001204 Email: lihongzhi@tpri.com.cn