

Performance Evaluation of a Supercritical CO₂ Power Cycle Coal Gasification Plant

Scott Hume Principal Technical Leader

The 5th International Symposium -Supercritical CO₂ Power Cycles

March 28-31, 2016, San Antonio, Texas

Structure

- Introduction
- Background
 - Base Case IGCC
 - Base Case IGCC with Capture
- Brayton Power Cycle
- Plant Design Basis
- Modeling Approach
- Results
 - Performance
 - Design Considerations
- Conclusions

Introduction

- Supercritical CO₂ Cycles offer the potential for high net efficiency of 48.9% (HHV)^[1] from coal
- Advanced IGCC design, novel plant components
- Investigation of sCO₂ Brayton coupled to a 'conventional IGCC gasifier design'
- IGCC Plant based on EPRI report 1015699 (2009)^[2]

[1] - R.J. Allam et al, "High efficiency and low cost of electricity generation from fossil fuels while eliminating atmospheric emissions, including carbon dioxide"

GHGT-11 - 18th-22nd November 2012, Kyoto International Conference Center, Japan

[2] – Integrated Gasification Combined Cycle (IGCC) Design Considerations for Carbon Dioxide (CO2) Capture, Schoff, R EPRI Report 1015690, 2009

Background - Base Case IGCC Plant

- Shell Syngas Cooler (SGC) design
- Medium pressure technology (43 barg)
- Oxygen purity 95% v/v
- Pressurized dry gas feed
- No CO shift or CO₂ removal
- Selexol acid gas removal
- GE 7FB combustion turbine + HRSG

System Fuel Input	1470
Gas Turbine Output	464
Steam Turbine Output	235
CO2 LP Compression	-
HP Pumps	-
Fuel Compression	-
Oxygen Compression	-
IGCC Aux	16.2
ASU	74.4
Steam Cycle Aux	8.2
Cooling Water Aux	11.1
Net Power	587.9
Power Plant Efficiency (HHV)	40.0%
CO2 lb/MWh	1770

ELECTRIC POWER RESEARCH INSTITUTE

Gasification with sCO₂ Brayton Power Cycle

- Coal gasified
- Resultant 'Syngas' processed
- Syngas compressed to >300 bara
- Combusted at low excess O₂ levels
- Supercritical CO₂ working fluid
- Expanded to produce power
- Recuperative heat exchanger
- Moisture condensed out
- CO₂ Gas Recompressed / Pumped
- Semi Closed Loop
 - Export CO_2 available at high pressure

6

Plant Design Basis

- Conventional gasification system
- PRB Fuel
- 273 tonnes/hr feed (1470MWth HHV)
- NH₃, COS, H₂S, Mercury removal
- Steam Cycle 565°C / 125 bara
- Max 700°C CO₂ feed to burner
- Turbine Inlet Temperature ~1150°C
- Max 760°C gas turbine exhaust
- Heat Exchanger min 20°K approach
- CO₂ delivered pressure ~150 bara
- 3 cases developed:
 - 1 Conventional Nitrogen Transfer Fluid
 - 2 Carbon Dioxide Transfer Fluid
 - 3 Case 2 except with High Purity Oxygen

Case 1 – N2TF

- Nitrogen transfer fluid (as before)
- Gasification plant Syngas production unchanged
- New power block ultra high pressure gas turbine
- Syngas cooler complete boiler unit
- ASU capacity increased, oxygen purity 95% v/v
- Moderator steam remains

ELECTRIC POWER RESEARCH INSTITUTE

Case 2 – CO2TF

- Transfer Fluid sourced from CO₂ working fluid
- Nitrogen content reduced over 90% from Case 1
- Gasifier process changed increased CO content
- No moderator steam, syngas CO₂ content higher
- Lower hydrogen content
- Oxygen purity at 95% v/v

IGCC Output:	Syngas F	Syngas Product			
Compostion	CO	68.32% v/v(w)			
	H2	22.58% v/v(w)			
	CO2	6.56% v/v(w)			
	N2	1.06% v/v(w)			
	Ar	1.39% v/v(w)			
	Others	0.09% v/v(w)			
Massflow		388165 kg/hr			

Case 3 – CO2TF (HPO)

Similar to Case 2 except:

ASU Oxygen purity increased to 99.5% v/v

- Nitrogen content reduced further by over 50%
- Argon content very low

IGCC Output:	Syngas Product			
Compostion	CO	69.59% v/v(w)		
	H2	22.71% v/v(w)		
	CO2	6.94% v/v(w)		
	N2	0.50% v/v(w)		
	Ar	0.17% v/v(w)		
	Others	0.09% v/v(w)		
Massflow		380393 kg/hr		

Compression Analysis – Pure CO₂

Compression Analysis – Case 1

Compression Analysis – Case 2

Compression Analysis – Case 3

Performance Results - Product Purity

Performance Results - Power

- Low purity CO₂ working fluid delivers more power but not within product specification
- Case 3 (HPO) meets specification and achieves near 100% capture with similar power output

Performance Results

Case		IGCC w/o Capture	sCO ₂ Case 1	sCO ₂ Case 2	sCO2 Case 3
Transfer Fluid		N ₂	N_2	CO ₂	CO ₂
Oxygen Purity	v%	95	95	95	99.5
Fuel Input	MWth	1470	1470	1470	1470
GT/Expander Power	MWe	464	922	864	846
Steam Turbine Power	MWe	235	52.3	58.4	59.3
CO ₂ Compression	MWe	-	95.0	86.3	83.2
CO ₂ Pumps	MWe	-	113.6	87.2	72.4
Fuel Compression	MWe	-	46.6	43.4	42.7
Oxygen Supply (ASU/Comp)	MWe	74.4	91.1	90.7	92.5
Gasifier Auxiliary	MWe	16.2	16.2	16.2	16.2
Plant Auxiliary	MWe	19.3	14.7	14.9	14.8
Net Power Exported*	MWe	587.9	596.0	582.4	582.6
Overall Plant Efficiency	% HHV	40.0	40.5	39.6	39.6
Capture Rate	%	0	99.5	99.3	99.2
CO ₂ Emission	lb/MWh	1770	11.6	12.9	13.6
CO ₂ Emission	g/kWh	803	5.3	5.9	6.2
CO ₂ Product Flow	lb/h	-	1,211,335	1,092,124	1,046,597
CO ₂ Product Flow	kg/h	-	549,483	495,407	474,755
CO ₂ Product Purity	v% wet	-	80.1	93.2	98.1

...with near 100% capture, performance close to IGCC without capture!

Technical Risks

- Higher Pressure Gasification
- Exchanger and Piping
- Combustor Design ultra low oxygen
- Expander Design
 - Integrally cooled HP blades
 - High temperature materials
- High & low temperature corrosion
- CO₂ Product Purity (oxygen)
- Ultra high pressure CO₂ Safety

Conclusions and Recommendations

- Superior low carbon performance
- Proven gasification technology
- Near 100% capture
- Opportunities to improve efficiency

Future areas of investigation

- sCO₂ turbine development
- Combustion performance
- Heat exchanger cost reduction
- Economic cycle optimization
- Product gas purity improvement

Together...Shaping the Future of Electricity

