Synergy of S-CO₂ Power Cycle and CCS Systems

Ladislav VESELY

C

Т

U

٥

m

P

r

a

g

U

a

Czech Technical University in Prague, Faculty of Mechanical Engineering

Introduction

- S-CO₂ cycles are recently very perspective and are researched all around the world
- Many application: nuclear, geothermal, solar, waste heat recovery systems
- S-CO₂ cycle has several issues

C

Т

U

٦

m

P

r

a

g

U

- One of issues is pinch point
 - The pinch point is caused by the variations of heat capacity of CO₂ and occurs when the heat capacity of the hot and cold streams (each at a different pressure level) intersect.
- The pinch point can be removed in several ways
 - One of them is addition of small amount of other substance into the pure CO_{2}

S-CO₂ cycle

- It is difficult to use a 100 % pure $\rm CO_{2}$ in the $\rm S\text{-}\rm CO_{2}$ cycles
- One may expect about 1% of mole fraction of other substances in it
- Impurities are present in working medium
 - the resulting mixture of CO_2 may lead to the disappearance of the pinch point in the regenerative heat exchanger
- the impurities have a negative effect on other components
 - Compressor
 - cooler

C

Т

U

٥

m

P

r

a

g

U

CCS technology

- The CCS systems are very perspective for the reduction of CO_2 from the flue gas of the fossil fired power plants
- The captured CO₂ is a multiple-component mixture

C

Т

U

Ī

m

P

r

a

g

U

- Effect of the mixture on the CCS system components is same as in the S-CO $_2$ cycle
 - This effect is especially high for the transport and the storage part of the CCS system
- \bullet In the CCS systems $\rm CO_2$ is used in the supercritical state or close to the critical pressure
 - \bullet The reason is the better transport properties of CO_{2} mainly the high density

CCS technology – Transport of CO₂

- The CCS technologies are used to capture CO_2 from flue gas of the fossil fired power stations, transport it and store it on a selected place.
- The transport can be done in liquid or gaseous phase
 - The transport of the gaseous phase is done through pipeline.
 - The transport of liquid phase is done through tanks for CO₂, by ship, train or truck
- The transport parameters:

C

Т

U

٥

m

P

r

a

g

U

- Pipelines operates from 8.6 to 20 MPa with the temperature from 4 °C to 38° C
- The transport pressure for liquid CO_2 is in the range from 0.52 MPa up to 7.3 MPa and temperature is about -50 °C

Mixtures from CCS

C

Т

U

٥

m

P

r

බ

g

U

- The mixtures of CO_2 from capture differ based on the separation method of CO_2 and the type of industry
- The basic components of mixture from capture are $N_2^{}$, $O_2^{}$, CO, Ar, $H_2^{}$ S, $H_2^{}$ and $H_2^{}$ O

Component	H ₂ O	H_2S	СО	CH_4	N_2	O ₂	Ar	H_2	CO ₂
	Ppm	Ppm	Ppm	vol.%*	vol.%*	vol.%*	vol.%*	vol.%*	%
Concentration	500	200	2000	< 4	< 4	-	< 4	< 4	>95.5%
*all non-condensable gases									

H ₂ O	H ₂ S	со	CH_4	N ₂	O ₂	Ar	H ₂	CO ₂	NO _x	SO ₂	SO3
ppmv	ppmv	ppmv	ppmv	%	%	%	ppmv	%	ppmv	ppmv	ppmv
Pre-combustion											
0.1 - 600	0.2 - 34000	0 – 2000	0 - 112	0.0195 - 1	0	0.0001 - 0.15	20 - 30000	95 – 99	400	25	-
Post-combustion											
100 - 640	-	1.2 - 10	-	0.045 – 0.29	0.0035 - 0.015	0.0011 - 0.021	-	99.6 - 99.8	20 – 38.8	0-67.1	-
Oxy-fuel combustion											
0-100	-	50	-	0.01 - 0.2	0.01 - 0.4	0.01 - 0.1	-	99.3 - 99.4	33 – 100	37 – 50	20

Effect of mixtures

C

T

U

٥

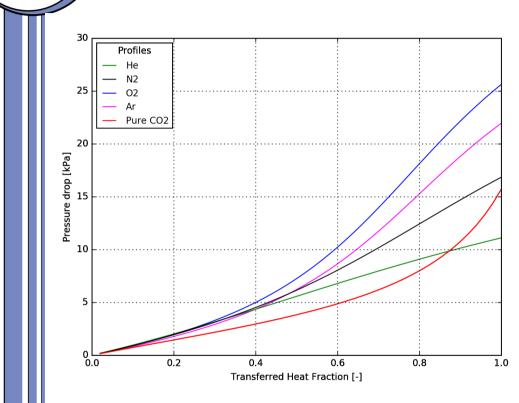
m

P

r

a

g


U

a

- The CCS systems and the $\mathrm{S}\text{-}\mathrm{CO}_2$ cycles have the same issues
- The mixtures will probably have a negative effect on the cycle efficiency and compressor station
- For CCS: the fraction of $\rm CO_2$ is more than 95 % and the concentration of impurities is less than 5 %
- The effect of mixtures on a heat exchanger is quite small for 1 % of mole fraction of other substance
- The gaseous mixtures have an effect on the design, the heat transfer and the pressure drops

2 5	
2.5	[kg/s]
2	[kg/s]
60	[°C]
32	[°C]
25	[°C]
12	[MPa]
1.5	[MPa]
	32 25 12

Effect of mixtures

C

T

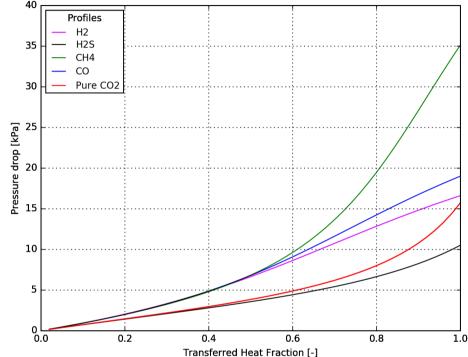
U

B

m

P

r


a

g

U

e

0.01	0.05	[-]
2		
2.60	4.91	
2.44	3.17	[m]
2.52	3.65	[m]
2.49	3.49	
2.51	3.45	
	2.60 2.44 2.52 2.49	2.33 2.60 4.91 2.44 3.17 2.52 3.65 2.49 3.49

- Shell and tube heat exchanger in the counter current flow arrangement
- The outer casing consists of a high pressure casing with the dimensions of 120 x 10 mm. Inside the high pressure tube there is a set of 37 tubes, each with the dimensions of 10 x 1.5 mm

Effect of mixtures

- Binary mixtures with N₂, He, O₂, and Ar:
 - impurities in the S-CO₂ cycle

C

Т

U

٥

m

P

r

a

g

U

- positive effect on the shift of the pinch point
- negative effect on the heat transfer and the total length of cooler
- Binary mixtures with H₂, H₂S, CH₄ and CO:
 - the typical components of mixture of CO₂ from the capture technology
- Multicomponent mixtures will likely have a similar effect as the binary mixtures
- Research of multicomponent mixture is necessary for both CCS systems and the $S-CO_2$ cycles and will be done in the future.

Results

C

Т

U

ð

m

P

r

a

g

U

- The CCS systems and the S-CO₂ cycles suffer from the same issues when impurities are mixed with the pure CO_2 .
- These impurities are always present in the captured CO_2 and to some extent are present in the S-CO₂ cycles as well.
- The CCS technology transport: consists of similar components (heat exchangers and compressors) as the S-CO₂ cycles.
- The design of compressors for the CCS system transport part is slightly different than that for the S-CO₂ cycles, the effect of mixtures on compression is similar.
- Shift of pinch point is possible, but with a negative effect on the compression near the critical point

Conclusion

C

Т

U

D

m

P

r

a

g

U

- Research of the effect of mixtures on the heat exchangers and compressors is one type of the S-CO₂ cycle and the CCS system synergy.
- Other type of synergy is the use of CO₂ as a working medium in the S-CO₂ cycles in the compressor stations or other part of the CCS system as a cycle for waste heat recovery.
 - Implementation of the S-CO₂ cycles to the CCS systems is very interesting and has a good perspective for the future systems.
 - CO_2 from capture can be used as a working medium, thus reducing issues with CO_2 storage and transport.
- Synergy of research for both technologies, the CCS system and the S-CO₂ cycles, will bring new interesting findings that will help development of both the CSS system and the S-CO₂ cycles.

Thank you for attention

Ladislav Vesely Department of Energy Engineering Faculty of Mechanical Engineering Czech Technical University in Prague

C

Т

U

٥

n

P

r

බ

g

U

2

Email: Ladislav.Vesely@fs.cvut.cz