

PARAMETRIC ANALYSIS OF SCO2 POWER CYCLES OPERATING AT MODERATE TEMPERATURES

The 5th International Symposium - Supercritical CO2 Power Cycles

March 29 to 31, 2016 San Antonio, Texas

Peter D. Friedman, PhD, PE. Michael P. Rapp

- Considerable effort has focused on sCO2 performance at relatively high cycle temperatures.
- Prior research has shown that at moderate temperatures, sCO2 cycles provide little efficiency gain from traditional Rankine cycles.
- However, sCO2 offers a number of other operational advantages over steam at moderate temperatures where efficiency gains are not realized.
- This presentation summarizes parametric analysis results of sCO2 cycles at moderate peak cycle temperatures

Analysis Plant Arrangement

Base Case

- Heat source:
 - 100MW Small Modular Pressurized Water Reactor
- IHX outlet conditions:
 - Cycle high temperature: 550K, Cycle high pressure: 30MPa
- Recuperator
 - Effectiveness: 92.5%
- Adiabatic components
- Turbomachinery
 - Turbine efficiency: 90%, Compressor efficiency: 85%
- Component pressure drops: 330kPa
 - Pre-cooler 100kPa, IHX 150kPa, Recuperator cold side 30kPa, Recuperator hot side 50kPa
- Piping pressure drops total: 370kPa
 - 1→2: 80kPa, 3→4: 10kPa, 5→6: 5kPa, 7→8: 40 kPa,
 - 9→ 10: 35kPa, 11→12: 200kPa

See paper for Thermodynamic, Heat Transfer and Fluid Dynamic relationships

Computational Methods

- Engineering Equation Solver (EES) from F-Chart Software ®
- 400 equations
 - Pressurized water reactor (PWR)
 - Secondary sCO₂ plant
 - Tertiary heat sink cooling system
- Recuperator procedure segmented the unit into 30 sections to determine the internal pinch point
- IHX subprogram segmented the unit into 10 sections
- Pre-cooler subprogram segmented the unit into 20 sections

- Engineering Equation Solver (EES) Internal property library:
 - In most cases, EES library values were within 0.003% of REFPROP values.
 - Near the critical point errors approached 1% in enthalpy and 0.8% in entropy.
 - Values for thermal conductivity and viscosity approached 15% and 20% respectively at the critical point, although these values were not used in the current model.

Results – Base Case

Base Case Results – Effect of Recuperation

Base Case Results – Effect of Cycle Low Temperature

		Sensitivity Analysis Cases				
	Base Case	1	2	3	4	5
		т _н	P _H	Component Efficiency	Recuperator Effectiveness	Pressure Drops
Point 1 Temperature (K)	550	450 - 700				
Point 1 Pressure (MPa)	30		25 - 40			
Efficiency						
Turbine	90%			80% - 95%		
Compressor	85%			70% - 92.5%		
Recuperator Effectiveness	92.5%				85% - 100%	
Component pressure drops (kPa)						
Pre-cooler	100					50-200
ІНХ	150					75-300
Recuperator (cold)	30					15-60
Recuperator (hot)	50					25-100
Piping pressure drops (kPa)						
Section 1-2	80					40-160
3-4	10					5-20
5-6	5					2.5-10
7-8	40					20-80
9-10	35					17.5-70
11-12	200					100-400

Parametric Analysis – Effect of Turbomachinery Efficiency

Note: $(1 - \eta_C) = 1.5(1 - \eta_T)$

Parametric Analysis – Effect of Recuperator Effectiveness

Parametric Analysis – Effect of Cycle High Pressure

- Over the parametric range tested, the thermal efficiency of real recuperated cycles is strongly dependent on the cycle high and low temperatures.
 - Efficiency of the cycle increases as the compressor suction temperature is decreased.
 - The efficiency increases smoothly as turbine inlet temperature increases. The increase shows that the efficiency roughly doubles as the turbine inlet temperature increases from 450K to 700K.

- Thermal efficiency is strongly dependent on cycle low pressure.
- For subcritical cycle low temperatures,
 - Maximum efficiency occurs when the cycle low pressure equals the saturation pressure
 - Efficiency drops in a step change if the pressure drops below the saturation pressure.
 - Efficiency drops gradually and smoothly if cycle low pressure is increased above saturation pressure.
- For cycles operating above the critical temperature, efficiency decreases smoothly and gradually if pressure deviates from the ideal.
- A suitable suction low pressure provides a reasonable safety margin with less than a 2% reduction in efficiency.
 - The recommended curve achieves 98% of the maximum efficiency at subcritical temperatures (by maintaining pressure slightly above saturation) and limits mechanical stresses at supercritical temperatures (by operating at pressures below the maximum efficiency).

- Cycle irreversibilities reduce the thermal efficiency as expected.
 - System pressure drops over the range of parameters tested have a relatively small influence on cycle efficiency.
 - Because of the magnitude of the back work, turbomachinery efficiencies have a large influence on cycle efficiencies.
- Increasing recuperator area increases efficiency, but at a diminishing rate as area increases.

????