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Focus on gas turbine bottoming cycle

Courtesy of Douglas Hofer, GE Global Research

When is sCO2 bottoming cycle performance attractive vs. steam? 
• GT size/type...aeroderivative vs. heavy-duty
• GT exhaust temperature...500°C to 700°C+
• Steam bottoming cycle type...2PNR and 3PRH
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Focus on cycle with dual split and expansion

• Best compromise between waste heat utilization and 1st law efficiency

� maximized power output and CC efficiency

Reference GT exhaust T sCO2 vs. steam

Kimzey (1) 625°C -13% bottoming cycle power

Cho et al. (2) 580°C +0.7%pts CC efficiency (58.4% steam)

Kimzey (1) 471°C +9% bottoming cycle power
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Assumptions in the heavy-duty GT case

• Key assumptions for sCO2 “theoretical” case:

– Very high expander and pump isentropic efficiencies: 95%

– Rankine cycle: condensed state at the coldest point

– Intercooled pumps

– 4°C hot and cold end approach on recuperators (high effectiveness)

– Split ratio and intercooling pressure optimized to maximize power

– Same UA as steam for waste heat recovery unit and condenser

GT Type [-] H-Class

Configuration [-] 2x1, 3PRH

Case [-]
Current exhaust

temperature range

Theoretical higher exhaust 

temperature range

Exhaust temperature [°C] 650-700 700-750

Steam maximum temperature [°C] 600 700

CC net efficiency [%] 62-62.5 >62.5
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Performance comparison in the HDGT case

• High pressure level needed for sCO2 to compete with steam
• Reference: max. 350bar in AUSC coal power plants research programs
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Beyond the „theoretical“ case

• sCO2 turbine and pump isentropic efficiencies reduced to usual level found in steam 

bottoming cycle
• Expander overall eff.: 91%�89%
• Pump overall eff.: 93%�77%

• 700°C CC efficiency of sCO2 at the optimum pressure is 0.8%pts lower than 700°C steam

• 600°C steam shows 0.4%pts higher net CC efficiency than 700°C sCO2
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Detailed performance comparison

Steam, 700°C, 

172bar

Steam, 600°C, 

172bar

sCO2, 700°C, 

400bar
Net CC efficiency delta [% pts] 0.00 -0.45 -0.80

WHRU thermal duty [%] 100.0 101.5 96.9
Difference to reference stack T [°C] 0 -11 +29

Bottoming cycle first law 
efficiency delta

[% pts] 0.00 -1.50 -0.26

Net electrical power [%] 100.0 98.0 96.4
Expanders electrical power [%] 100.0 98.3 123.6

Pumps electrical power [%] 100 113 1632
HT expander inlet volume flow [%] 100.0 98.9 118.5
Condenser inlet volume flow [%] 100.0 107.5 0.2

• Poorer waste heat utilization in sCO2 case
• Lower WHRU thermal duty

• Higher stack temperature

• sCO2 1st law efficiency higher than steam at 600°C, lower at 700°C
• Not high enough to compensate for lower utilization

• sCO2 larger gross power and lower condenser inlet volume flow
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Exergy analysis

• Total incoming exergy flow lower in 

sCO2 case (fuel heating not considered 

for CO2)

• Net electric power output lower in sCO2 

case due to higher exergy flow losses

• Exergy flow out lower for sCO2 because 

no heated fuel leaves the cycle unlike in 

the steam case
• If fuel heating neglected in the steam 

cases, sCO2 has higher exergy outflow 
because of higher stack temperature
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Exergy flow losses analysis

• WHRU exergy flow losses lower in sCO2 case due to a better temperature match during heat 

exchange 

• Condensers losses similar in 3 cases

• Losses during expansion only slightly higher in sCO2 cases because of larger gross power

• Total exergy flow losses accounted above lower in sCO2 case

• This changes when considering pump exergy losses, much higher in sCO2 case

• Losses of sCO2 compared to steam further increased by recuperators exergy losses
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Comparison in the aeroderivative GT case

• Key assumptions for sCO2:

– Reasonable expander and pump isentropic efficiencies at this scale (85% to 
90% and 75% to 80% respectively)

– Rankine cycle: condensed state at the coldest point (air-cooled)

– Non-intercooled pumps

– 4°C hot and cold end approach on recuperators (high effectiveness)

– Split ratio and intercooling pressure optimized to maximize power

– Same UA as steam for waste heat recovery unit and condenser

GT Type [-] LM2500

Configuration [-] 1x1, 2PNR

Exhaust temperature [°C] 525-550

Steam maximum 

temperature
[°C] 500

CC net efficiency [%] 52.5-53
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Performance comparison in the Aero case

• sCO2 outperforms steam when pressure higher than 200bar

• Optimum of 0.5%pts CC net efficiency gain over steam baseline reached at 250bar

• Despite more near-term design with less optimistic boundary conditions than for heavy-duty 

GTs, sCO2 cycle shows superior performance to a steam bottoming cycle for aeroderivative

gas turbines
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Detailed performance comparison

Steam, 500°C, 

40bar

sCO2, 500°C, 

250bar
Net CC efficiency delta [% pts] 0.00 0.50

WHRU thermal duty [%] 100.0 96.5
Difference to reference stack T [°C] 0 +23

Bottoming cycle 1st law 
efficiency delta

[% pts] 0.00 +2.07

Net electrical power [%] 100.0 103.5
Expanders electrical power [%] 100 135

Pumps electrical power [%] 100 3884
HT expander inlet volume flow [%] 100.0 49.6
Condenser inlet volume flow [%] 100.0 0.2

• Poorer waste heat utilization in sCO2 case
• Higher stack temperature

• Lower WHRU thermal duty

• sCO2 1st law efficiency higher than steam
• Higher enough to compensate for lower utilization and result in higher CC efficiency

• Key difference with heavy-duty GT

• sCO2 larger gross power and lower condenser inlet flow
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Exergy analysis

• Same total incoming exergy flow in both cases 
• No fuel heating considered

• Net electric power output higher in sCO2 case 
• Due to lower exergy flow losses

• Despite higher stack temperature losses
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Exergy flow losses analysis

• WHRU exergy flow losses lower in sCO2 case 

• Condensers and expanders losses similar in both cases

• Unlike in heavy-duty GT case, reduction in WHRU exergy flow losses large enough to 

make up for the higher pumping and additional recuperator losses

• Result in overall lower exergy flow losses in sCO2 case
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Conclusion

• sCO2 bottoming cycle considered in this paper will likely 

– achieve higher performance than 2PNR steam bottoming cycles 
typically paired with small aeroderivative gas turbines with reasonable 
pressure and turbomachinery efficiency levels

– need very high component efficiencies and operating pressures to 
achieve higher performance than 3PRH steam bottoming cycles 
typically paired with large heavy-duty gas turbine

• Other factors need to be compared between sCO2 and steam 
bottoming cycles:

– cost

– footprint

– operability

– maintenance
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