

S-CO₂ cycle design and control strategy for the SFR application

2016.03.30

Yoonhan Ahn, Min Seok Kim, Jeong Ik Lee

Ph.D. candidate. Dept. of Nuclear & Quantum Engineering, KAIST <u>minskim@kaist.ac.kr</u> +82-42-350-3882

S-CO₂ Power Cycle Development

Small Modular sized SFR design

Name	CEFR	PFBR-500	PRISM	4S	ARC-100
Thermal power class	Small	Medium	Medium	Small	Small
Efficiency, %	30	40	37	37	38
Core outlet temperature ,ºC	530	547	510	510	510
Developer	CIAE	IGCAR	GE-Hitachi	Toshiba	Advanced Reactor Concepts
Country	China	India	U.S.A	Japan	U.S.A
Power conversion system	Steam Rankine				S-CO ₂ Brayton

S-CO₂ cycle for the SFR application

- The benefits of the $S-CO_2$ cycle: ٠
 - relatively high efficiency under the mild turbine inlet temperature condition
 - simple layout and compact size
 - Potentially enhanced the safety of the SFR system

➤20MWe Recompression SCO₂ PCS Layout [P. Hejzlar et al, MIT-2007]

Sodium-Water Reaction (SWR)

Before

After

□ Sodium-CO₂ interaction

After interaction

➤Comparison of sodium reaction with water and CO₂ in a pipe [J. Eoh (2010)]

S-CO₂ Power Cycle Development

S-CO₂ cycle design

- The KAIST-Closed Cycle Design (KAIST_CCD) code, an in-house code developed by KAIST research team is based on the MATLAB.
- Enthalpy and other fluid properties information for the code calculation is provided directly by the NIST reference fluid thermodynamic and transport properties database (REFPROP).

S-CO₂ cycle turbomachinery design

- Generally, in a large scale system, axial type turbomachineries are favored over other types.
- However, in the S-CO₂ cycle, radial type turbomachineries can be more appropriate even for the relatively large scale MW output system due to the high density and low pressure ratio cycle characteristics.

-Operating characteristics between axial and radial turbomachinery (Gong et al., 2006)

Radial	Axial		
Relatively constant flow, variable head	Relatively constant head, variable flow behavior		
Best suited for lower flow rate	Best suited for higher flow rate		
Higher pressure ratio applications	Moderate pressure ratio applications		
Fewer or single stage	Commonly used with multi stage configurations		
Shorter axial length due to fewer stages	Longer axial length due to multi stages		
Relatively wider operating range	Limited operating range		
Lower efficiency by up to 4% in general compared to the axial machine	Higher efficiency, especially if shrouded		

- Turbomachinery Technology options for S-CO₂ cycle [Sienicki, J., 2011]

The Factor	Power (MWe)					
I M Feature	0.3 1	.0 3.0	1 <mark>0 30 10</mark>	0 300		
TM Speed/Size	75,000/5 cm	30,000 / 14 cm	10,000 / 40cm	3600/1.2 m		
Turbine type	Single	stage Radial	multi stage			
Compressor ty	00 Single stage	Radial		multi stage		
	Chilgle Stuge		single stage Axia	n multi stage		
			- :			

Turbomachinery design code [KAIST_TMD]

✓ Ideal gas based correlations cannot be used for S-CO₂

▲ Predicted off-design performance map (Sandia National Lab.)

Turbomachinery design code [KAIST_TMD]

Code validation and verification (V&V)

- The Sandia National Laboratory (SNL) data are the only available compressor performance data on the S-CO₂ cycle research field so far.
- To validate KAIST_TMD, the compressor off design map from it compared with experimental data from SNL.
- KAIST_TMD has similar tendency in pressure ratio, whereas the efficiencies were predicted with some errors.
- ✓ It suggests that internal loss models based on air yield reasonable results with S-CO₂.
- ✓ Three external impeller loss models are considered such as recirculation, disk friction, and leakage.
- External losses are added only to the impeller exit stagnation enthalpy without any pressure change. It means external losses only affect efficiencies.

*Source: S.A. Wright. et al., Operation and Analysis of a S-CO₂ Brayton cycle, 2010

S-CO₂ cycle turbomachinery design

S-CO₂ cycle heat exchanger design

Operating condition

- ✤ High pressure (P_{min} > 7.4 MPa)
- High temperature

Printed Circuit Heat Exchanger

- Highly compact & effective Excellent choice for gas heat exchanger
- Parallel core stacking Enables to use on large systems

Diffusion bonding

Heat exchanger design code [KAIST_HXD]

- Heat exchanger design
 - All heat exchanger is assumed to be the Printed Circuit Heat Exchanger (PCHE) type.
 - KAIST-HXD(Heat Exchanger Design) in-house code is used.

- Material : SUS 316
- Material density = 8000 kg/m3
- Material melting point = 1375~1400 'C
- Channel diameter, dc = 1.8~2.2mm
- t(Plate thickness) = 0.5 mm
- Pc(Channel pitch) = 2.2~2.6 mm,
- $P_{c} = d_{c} + t_{f} = > t_{f} = 0.4 \text{ mm}$
- Recuperator Effectiveness(%) : 95

Counter current flow type PCHE PCHE type heat exchanger scheme drawing

Fig. PCHE configuration

Fluid	sodium	helium	CO ₂ N ₂ wate		water
Nu	$N_{\rm H} = 7 \pm 0.025 \ D_{\rm o}^{0.8}$	N 4065 000005 D	N O	1 COC D 0.62	D 0.317
Correlation	$Nu = 7 + 0.023 \cdot Fe$	$Nu = 4.065 + 0.00305 \cdot \text{Re}$	$Nu = 0.1696 \cdot Ke \cdot Pr$		
F	$f = 4 \cdot (0.0014 + 0.125 \cdot \mathrm{Re}^{-0.32})$	$f = \frac{16.51}{100000000000000000000000000000000000$	<i>f</i> =	01924 · Re	-0.091
correlation		Re	,		
Applicable	Niet linsite d	250.250			2
range, [N _{Re}]	Not limited	250-350	2,500-33,000		
reference	Hejzlar et al., 2007	Kim, 2009	Ng	go et al., 20	07

Table. Heat exchanger design parameters of 75MWe S-CO₂ cycle

Heat exchanger	HTR	LTR	PC	IHX
Heat, MW	108.2	268.7	102.1	178.8
Effectiveness, %	97.1	93.1	73.8	90.5
Volume, m ³	6.9	8.5	3.07	2.3
Geometry, m (L x W x H)	1.1 x 2.5 x 2.5	1.4 x 2.5 x 2.5	1 x 1.75 x 1.75	0.6 x 2.1 x 2.1

Heat exchanger design code [KAIST_HXD]

Code validation and verification (V&V)

- ✓ Developed KAIST_HXD can be used for :
 - 1. Design optimization
 - 2. Steady state performance analysis
- ✓ Lab-scale PCHE was designed with the design code and manufactured by a Korean manufacturer.
- ✓ Manufactured PCHE was installed to a KAIST S-CO₂ cycle experimental facility (S-CO₂PE) and the performance test was conducted.
- Experimental data was accumulated for reliable design code validation

▲ View of the S-CO₂PE facility & designed PCHE

▲ Designed PExperience and the set of the second set of the secon

S-CO₂ Pipe Design

Determination of Pipe Diameter and Thickness for S-CO₂ Cycle

Flow Velocity

 $V = f_{pv} / \rho^{0.3}$

by Ronald W. Capps(Chem. Eng. 1995.6)

V : optimal flow velocity [m/s] f_{pv} : pipe velocity factor $[m(\frac{kg}{m^3})^{0.3}/s]$ ρ : density of flow $[\frac{kg}{m^2}]$

PIPE VELOCITY FACTORS							
Motive Energy Source	m (kg/m³) ^{0.3} /s						
Centrifugal Pump, Blower	14						
Compressor Pipe dia<6in. Pipe dia>6in.	24 29						
Steam Boiler	63~68						

Minimum thickness

$$t_m = \frac{PD_0}{2(SE + Py)} + A$$

 t_m : minimum required wall thickness [m]P: internal design pressure [Pa]Do: outside diameter of pipe [m]S: maximum allowable stress [Pa]E: weld joint efficiencyY: coefficientA: additional thickness [m]

• Conceptual design of S-CO₂ Recompression Cycle

- 3D Schematic

Heat : 178.8 MW

Piping was selected in accordance with the ASME standard

S.C.	Nominal Pipe Size	External Diameter (m)	Velocity (m/s)	Thickness(m)	Material type	Pressure drop (kPa)
1	24	0.610	31.8	0.03493		46.68
2	28	0.711	42.7	0.01905	Nickel and High Nickel Alloys, N06600, B 168	28.47
3	28	0.711	25.3	0.01905		60.78
4	28	0.711	15.8	0.01748		8.50
5	28	0.711	10.3	0.01748	Low and Intermediate Alloy Steel, P91 A335	13.17
6	24	0.610	3.9	0.01588		0.91
\overline{O}	24	0.610	3.7	0.03493	Nickel and High Nickel	2.25
8	24	0.610	7.7	0.03493	Alloys, N06600, B 168	22.95
9	24	0.610	7.6	0.01588	Low and Intermediate Alloy Steel, P91 A335	4.75
10	24	0.610	4.4	0.03493		2.81
(1)	24	0.610	12.5	0.03493	Nickel and High Nickel Alloys, N06600, B 168	6.94
12	24	0.610	23.8	0.03493		89.39
Total pressure drop uncluding minor loss (kPa)						287.60

CO₂ Recovery System Design

- The suggested concept
 - Conventional leak rate is assumed, which the conventional leak rate is less than 1kg/s per seal.
 - To reduce the thermal efficiency loss with CO₂ recovery
 - It is not only simple and intuitive but also has relatively very low additional W_{comp}.
 - It does not need additional compressor.
 - Calculate the $W_{net,loss} \rightarrow 0.312 \ MW_e$
 - Thermal efficiency loss caused by CO₂ inventory recovery system is 0.17 %.

 $W_{net,loss}$ Loss due to the *m* change of turbines and compressors

$$W_{net,loss} = W_{net,design} - W_{net,new}$$

= $W_{net,design} - (W_{turb,new} - W_{comp,new})$

Storage tank (Low-pressure tank)	Leakage position (High-pressure tank)	T (°C)	P (MPa)	<i>ṁ</i> (kg/s)	
66.2 °С 7.6 МРа	1. TB inlet	508.6	19.36		
	2. MC outlet	61.6	20.21	1.0	
	3. RC outlet	156.2	20.20		
Total mass flow rate					

CO₂ Recovery System Design

CO_2 critical flow model

Description of CO₂ critical flow model

CO₂ Recovery System Design

CO₂ critical flow model

• Code validation and verification (V&V)

- KAIST research team conducted experiments with CO₂ critical flow simulation facility in turbine inlet and compressor outlet conditions.
- The mass flux calculated by using the measured values has similar trend with the result of CO₂ critical flow model in all cases.

▲ CO₂ critical flow model validation with experimental data

S-CO₂ Cycle Control Strategy

Part load operation control strategy of S-CO₂ cycle

 \blacktriangle S-CO₂ cycle quasi-static analysis code algorithm

▲ Comparison of compressor surge margin in part load conditions

Conclusions and Future Work

Conclusions

- ✓ The S-CO₂ power conversion system is suitable for the small modular SFR application due to the safety, high efficiency, and small footprint.
- \checkmark The S-CO₂ cycle design can be potentially applied with existing lab-scale experimental data.
- ✓ KAIST research team has accumulated many reliable data of main component's software and hardware for the S-CO₂ cycle design, but further code V&V should be performed for the complete power system design with control strategy.

• Future work

- ✓ Code V&V for turbomachinery and heat exchanger design codes will be further performed.
- ✓ The leakage flow and physical phenomena in the turbomachinery seal sections will be further studied in the future.
- ✓ To establish the most efficient strategy for the part load conditions, the potential of the valve and inventory controls will be further investigated.
- ✓ Real time simulation in various operation conditions will be conducted through the transient analysis code.
- ✓ For the safety analysis of Sodium leak scenario, study of Na-CO₂ reaction in heat exchanger will be performed.