The 5th International Symposium -Supercritical CO₂ Power Cycles March 29–31, 2016, San Antonio, Texas

Dependence of Thermal Efficiency on Receiver Temperature of Solar Thermal Power Systems Combined with Supercritical CO₂ Gas Turbine Cycle and Brayton CO₂ Gas Turbine Cycle

> Yasushi Muto, Masanori Aritomi Takao Ishizuka, Noriyuki Watanabe Tokyo Institute of Technology

Contents

- The supercritical CO₂ Gas turbines are applied to the new solar thermal power generation system provided with a Na cooled tower receiver and an Al heat storage heat exchanger.
- Two supercritical CO₂ cycle schemes called "supercritical CO₂ cycle and "Brayton CO₂ cycle" are examined, in particular, effects of the receiver inlet temperature on the thermal efficiency.
- The receiver efficiency, the Na-AI-CO₂ heat exchanger characteristics, the cycle thermal efficiency and the thermal efficiency of the total system were examined.
- Recuperator size was examined.

New Solar Thermal Power Generation with a CO2 Gas Turbine

Receiver Na Flow channel Thermal Energy transferred to Na $\dot{\mathrm{m}}C_P(T_{Na,Out}-T_{Na,In})$ $= \pi D_2 H_V (q_{Sun,In} - q_{Rad} - q_{Conv})$ $T_{Na,Out}$ **Thermal Energy Loss** Na Dependent on not $q_{Conv}(j)$ only the outlet D2 temperature but also $q_{Rad}(j)$ the inlet temperature D1 Ηv ← tv $q_{Sun,In} = (1 - \varepsilon)q_{Sun,0}$ \dot{m}_{Na} $T_{Na,In}$ $q_{Sun,o}$ (125MW) Na Dv

Receiver Characteristics

Assumptions

- Na outlet temperature = 700°C
- Maximum shell temperature = 780°C
- Shell design temperature = 800°C
- Material = Alloy 800H
 (σa = 14.9 MPa)
- Na inlet pressure = 0.13 MPa
- Na pressure drop = Less than 0.02 MPa

250°C increase of Na inlet temperature results in the receiver efficiency reduction of 10%.

Na-Al-CO₂ Heat Exchanger

The values of tube spacing at the design point are 209 mm, 254 mm and 326 mm for the S-CO₂ cycle (60.5 mm), S-CO₂ cycle (48.6 mm) and the Brayton cycle, respectively.

Assumptions in the HX Analyses

- Steady state
- One dimensional heat transfer
- The flow of Na and CO₂ is counter flow
- Al melting behavior is not considered explicitly. Instead, the energy storage is considered by separating the energy of ratio (β) from the energy transferred from Na to CO₂.
- The value of β is 30%, which coincides with the power demand at night. This determines Al inventory and then the HX dimensions.
- Temperatures of the CO₂ cycles are determined so as to achieve the maximum cycle thermal efficiency.
- The values of tube spacing between Na tubes and CO2 tubes are adjusted to the heat load.

β = 30% and Aluminum Inventory

- Total solar thermal energy
- =125MW × about $65\% \times 12hr = 3.5 \times 10^{6} MJ$
- Demand

Daytime6:00-18:00 $100\% \times 12hr$ = 12hrNight18:00-20:00 $100\% \times 2hr = 2hr$ 20:00-24:00 $60\% \times 4hr = 2.4hr$ = 5hr24:00 - 6:00 $10\% \times 6hr = 0.6hr$

- Heat storage needed
 - 5/17 = <mark>30%</mark>

 $3.51 \times 10^{6} \text{ MJ} \times 0.3 = 1.053 \times 10^{6} \text{ MJ}$

• Heat storage capacity

Latent heat $0.397 \text{ MJ/kg} \times 30\% = 0.119 \text{MJ/kg}$ Sensible heat $0.897 \times 10^{-3} \text{ MJ/K} \times 250 \text{K} = 0.224 \text{ MJ/kg}$ Total0.119 MJ/kg + 0.224 MJ/kg = 0.343 MJ/kg

 Aluminum inventory needed (1.053 × 10⁶ MJ)/ (0.343 MJ/kg) = 3.07 × 10³ ton

Temperature Distributions in HX

- Since the CO2 inlet temperature is low: 397°C in the Brayton CO2 cycle, the inlet temperature vary widely at the CO2 inlet.
- The main heat resistance occurs at the wall.
- No large difference is observed between the tube sizes of 60.5mm and 48.6mm.

Aluminum Melting Area

Thermal Efficiency of the Total System

-●-S-CO2, d2= 60.5mm -▲-S-CO2, d2= 48.6mm

---BraytonCO2, d2= 60.5mm

At the same receiver inlet Na temperature, the value of the thermal efficiency is 2% higher for the supercritical CO₂ cycle than that of the Brayton CO₂ cycle, respectively.

Finally, the thermal efficiency of the supercritical CO₂ cycle is 2.6% higher than the Brayton cycle.

Thermal efficiency = $\frac{Power output}{Solar energy input (125 MW)}$ = (Receiver efficiency) × $(1 - \beta)$ × (Cycle thermel efficiency)

Cycle Thermal Efficiency of Supercritical CO₂ Cycles

Assumptions

- Turbine inlet temperature = 650°C
- One intercooling for the supercritical CO2 GT cycle.
- Two intercooling for the Brayton CO₂ GT and He GT cycles.
- Then, 3 compressors
- Recuperator effectiveness = 91% for CO₂ GT cycles
- It = 93% for He GT cycle (Recuperator effectiveness = 95%)

Supercritical CO₂ GT Cycle

Assumptions

- Turbine adiabatic efficiency 92%
- Compressor adiabatic efficiency 88%
- Pressure loss (ratios over the inlet pressure)
- ① Heat source 1.0%
- (2) Recuperator high temperature side 1.2%
- ③ Recuperator low temperature side 0.4%
- (4) Precooler 1.0%
- 5 Intercooler 0.8%
- Recuperator average temperature effectiveness 91%

Cycle Thermal Efficiency = 49.2%

Brayton CO₂ GT Cycle

Cycle Thermal Efficiency = 44.8%

Recuperator Designs

Design Conditions of the Recuperators

Items		Supercritical CO2 Gas Turbine		Brayton CO2 Gas Turbine
		RHX-1	RHX-2	RHX
Recup	erator effectiveness %	91	91	91
Numb	er of modules	6	6	6
Heat load MW/modules		11.012	4.884	8.950
HT side	Flow rate kg/s	32.887	32.887	26.248
	Inlet temperature °C	503.25	209.70	430.84
	Inlet pressure MPa	6.410	6.333	1.305
LT side	Flow rate kg/s	32.887	19.598	26.248
	Inlet temperature °C	196.69	67.39	92.67
	Inlet pressure MPa	20.283	20.365	8.113

Results of the Recuperator Designs

Items		Supercritical CO2 Gas Turbine		Brayton CO2 Gas Turbine
		RHX-1	RHX-2	RHX
Width × Lengt	h m/module	0.26×1.0	0.26×1.0	0.26×0.88
Height	m/module	5.72	3.25	4.54
Weight	ton/module	10.66	6.25	15.19
Total weight	ton	64.0	37.5	91.1
Heat transfer	capacity MW	11.023	4.892	8.967
Pressure	HT side %	0.227	0.383	0.931
(dP/Pinlet)	LT side %	0.252	0.040	0.074

The total weight of recuperators for the supercritical CO₂ gas turbine cycle is equivalent with that for the Brayton CO₂ gas turbine cycle.

Conclusions

In the solar thermal power plant provided with the tower type receiver cooled by Na, a Na-AI-CO₂ heat exchanger and two CO₂ GT cycles, i.e., "20 MPa supercritical CO₂ GT cycle" and "8 MPa Brayton CO₂ GT cycle", effects of the receiver inlet Na temperature were examined. The ratio of heat storage to the total thermal energy was assumed 30%, which means Al inventory of 3,000 ton.

The following conclusions were obtained.

- 1. The values of the receiver efficiency decreases with the Na inlet temperature.
- 2. The values of the receiver efficiency corresponding to the AI melting area of 30% were 600°C, 610°C and 640°C for the supercritical CO₂ cycle (60.5 mm and 48.6 mm) and the Brayton cycle, respectively.
- 3. Appropriate and then selected values of the turbine inlet pressure are 20 MPa and 8 MPa for the supercritical CO_2 cycle and the Brayton CO_2 cycle, respectively.
- 4. In these pressure, values of the cycle thermal efficiencies are 49.2% for the supercritical CO_2 cycle and 44.8% for the Brayton CO_2 cycle.
- 5. The values of the thermal efficiency of the total system are 22.6% and 20.0% for the supercritical CO_2 cycle and for the Brayton CO_2 cycle, respectively.
- 6. The recuperator weight for the supercritical CO_2 cycle is equivalent to that for the Brayton CO_2 cycle.