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Motivation and Approach 

 sCO2 Cycle modeling at Argonne started in 2001 

– NERI + Ph.D. Dissertation -> Gen IV -> AFCI -> ARC -> SMR -> ART  
 

 Needed answers to fundamental questions 

– What is the cycle efficiency?  

– Is cycle better than steam? 

– What it takes to achieve the performance? 

– Can you control the cycle close to critical point? 

– What is transient response of the cycle?  For nuclear power plants, need to 
calculate operational transients and postulated accidents for safety evaluation 

 

 Solution: create a first-principal but realistic code 

– Ability to modify, improve, and extend the code as knowledge on the cycle 
grew 

– Be able to couple to Argonne reactor analysis codes 

– Sufficient detail to serve as “simulation experiments” 
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ANL Plant Dynamics Code (PDC) 

 Specifically developed for analysis of S-CO2 cycle 

– One-dimensional system level transient analysis code 

– Targets the specific features of the cycle 

• Operation close to the critical point 

• Recompression cycle (if needed)  

– Real CO2 properties 

• Property variations in HX’s and turbomachinery 

• No simplifying ideal gas assumptions 

• Compressibility effects  

 Incorporates S-CO2 cycle control mechanisms and logic 

 Incorporates steady-state design code to determine cycle initial conditions 

 Design and performance subroutines for both turbine and compressor 

 Coupled to SAS4A/SASSYS-1 that performs reactor dynamic analysis 
 

 Validation of the PDC against the SNL RCBC and BMPC IST data is ongoing 
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Steady-State Performance & Optimization 

 Calculate design performance for the cycle (efficiency) and each 
component (effectiveness, pressure drop) 

 

 Trade-off and optimization 

– Operating conditions  
(e.g., pressures) 

– HX size and performance vs cost  
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ABR S-CO2 CYCLE TEMPERATURES, PRESSURES, HEAT BALANCE, AND EFFICIENCIES
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Transient Analysis 

 For nuclear applications, transient performance  
of the cycle is also important 

– Cycle control  and load following 

• E.g., integration with autonomous reactor control 

– Accident conditions – how they affect  
reactor safety  

• E.g., Postulated CO2 pipe break = A nuclear power  
plant design basis accident 

 Transient part of the PDC also developed to  
account for specifics of operating near  
the critical point 

– Properties variation in HXs and  
turbomachinery 

– No ideal gas assumptions 

– Compressibility effects  

– Equations are written to account  
for properties 
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Control System Development 

 Significant effort was devoted to  
developing cycle control approach 

– Grid load following  

– Decay heat removal mode 

– Controllability near the critical point 

– Interaction with reactor control 

 

 Combination of various control  
mechanisms is required 
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1 – Reactor core 
2 – Control rods 
3 – Intermediate Heat Exchanger 
4 – Primary Na Pump 
5 – Intermediate Na Pump 
6 – Na-to-CO

2
 heat exchanger 

7 – CO
2 
turbine 

8 – Generator 
9,10 – High and low temperature 

recuperators 

11 – Cooler 
12,13 – Compressors 
14 – Cooling circuit and control  
15 – Na-to-CO

2
 heat exchanger 

bypass valve                         
16 – Turbine throttling valve              

17 – Turbine bypass valve 
18– Inventory control 
19 – Cooler bypass valve 
20 – Compressor throttling valve 
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20 



Example of Transient Calculations 

 Load following from 100% to 0% followed by disconnection from the grid 
and transition to decay heat removal mode 
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PDC Validation 

 Validation is an essential part of code development 

– PCHE tests at Argonne 

– SNL Recompression Closed  
Brayton Cycle facility 

– BPMC Integrated System Test 

 Both steady-state  
and transient data   
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PDC Steady-State Results
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Future Plans 

 Continue PDC validation moving on to data from larger-scale facilities 
(STEP, etc.) 

 

 Application of the PDC to dry air-cooled sCO2 cycles 

 

 Investigation of potential benefits of Model-Based Predictive Control and 
other advanced control methodologies 

 

 Applications to other heat sources than nuclear (fossil, solar) 
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