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Motivation and Approach

= sCO, Cycle modeling at Argonne started in 2001

NERI + Ph.D. Dissertation -> Gen IV -> AFCI -> ARC -> SMR -> ART

= Needed answers to fundamental questions

What is the cycle efficiency?

Is cycle better than steam?

What it takes to achieve the performance?

Can you control the cycle close to critical point?

What is transient response of the cycle? For nuclear power plants, need to
calculate operational transients and postulated accidents for safety evaluation

= Solution: create a first-principal but realistic code

Ability to modify, improve, and extend the code as knowledge on the cycle
grew

Be able to couple to Argonne reactor analysis codes
Sufficient detail to serve as “simulation experiments”
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ANL Plant Dynamics Code (PDC)

= Specifically developed for analysis of S-CO, cycle
— One-dimensional system level transient analysis code
— Targets the specific features of the cycle

e QOperation close to the critical point
e Recompression cycle (if needed)
— Real CO, properties
e Property variations in HX’s and turbomachinery
e No simplifying ideal gas assumptions
e Compressibility effects

= Incorporates S-CO, cycle control mechanisms and logic

= |ncorporates steady-state design code to determine cycle initial conditions
= Design and performance subroutines for both turbine and compressor

= Coupled to SAS4A/SASSYS-1 that performs reactor dynamic analysis

= Validation of the PDC against the SNL RCBC and BMPC IST data is ongoing
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Steady-State Performance & Optimization

= (Calculate design performance for the cycle (efficiency) and each
component (effectiveness, pressure drop)
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Transient Analysis
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Control System Development

S-CO, CYCLE CONTROL STRATEGY
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1 — Reactor core

2 — Control rods

3 - Intermediate Heat Exchanger

4 — Primary Na Pump

5 — Intermediate Na Pump

6 — Na-to-CO, heat exchanger

7~ CO, turbine

8 — Generator

9,10 — High and low temperature
recuperators

11 - Cooler

12,13 — Compressors

14 — Cooling circuit and control

15 - Na-to-CO, heat exchanger
bypass valve

16 — Turbine throttling valve

17 — Turbine bypass valve

18- Inventory control

19 — Cooler bypass valve

20 — Compressor throttling valve
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Example of Transient Calculations

= Load following from 100% to 0% followed by disconnection from the grid
and transition to decay heat removal mode
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PDC Validation

= Validation is an essential part of code development
— PCHE tests at Argonne e < PDC Steady-State Restits
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Future Plans

Continue PDC validation moving on to data from larger-scale facilities
(STEP, etc.)

= Application of the PDC to dry air-cooled sCO, cycles

= |nvestigation of potential benefits of Model-Based Predictive Control and
other advanced control methodologies

= Applications to other heat sources than nuclear (fossil, solar)
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