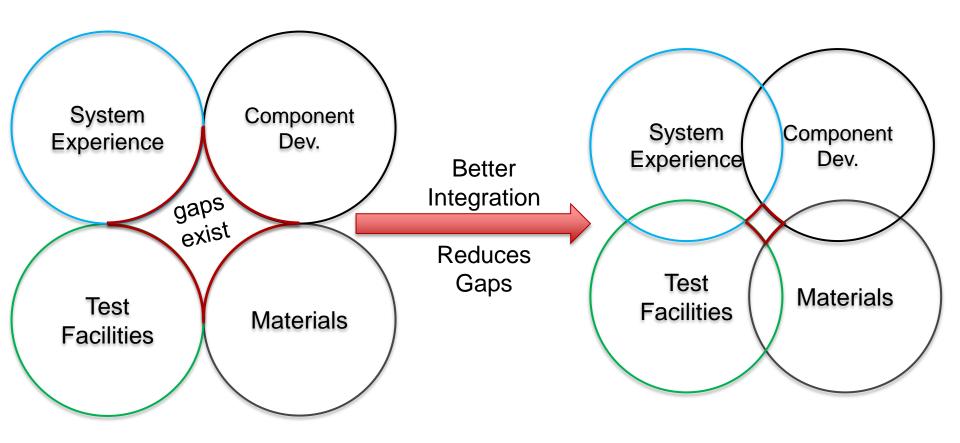
Exceptional service in the national interest

Photos placed in horizontal position with even amount of white space between photos and header

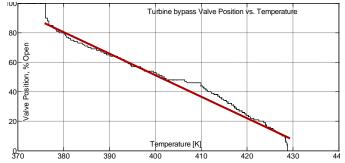

sCO2 Brayton Research at Sandia National Laboratories

J. Pasch, D. Fleming, M. Carlson, M. Walker, A. Kruizenga, G. Rochau

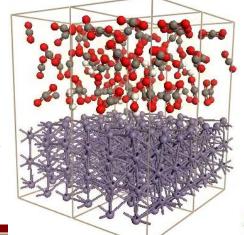
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2016-

Current Progress

System Experience and Reliability:


- Recent tests achieved two primary conclusions:
 - Robust heat rejection system operations for various climates
 - Turbine/compressor models predict experimental performance
- Establish procedures for pre-test, start-up, and ramp-up
 - Reliable procedures for standard operations
- Root Cause Analysis as tool to refining system operations

Component Development Tools and Test Facilities:

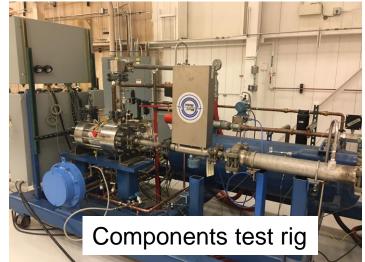

- Heat Exchanger Test platform: water-to-water up to 100kW_{th}
 - Collaborations continue to prove out different PCHE designs
- Building a bearing and seals test platform
- Advanced methods to understand wear/performance
 - Computed Tomography for turbomachinery wear

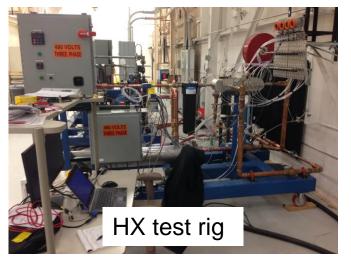
Understanding Fundamental Issues:

- Fundamental models: simulations aide mechanistic interpretation
 - Molecular dynamics (MD) of ferrous/nickel rich alloys baseline behavior
- Economic Optimization: carbon steel in sCO2 up to 260°C

Future Efforts and Thoughts

System Experience and Reliability:


- Improving integration among research areas
- Investigate RCBC technology for Pilot Test System
 - Collaborations: identify and formation
 - Prove out: component and system performance
 - Baseline Models: steady state and transient
 - Dry Cooling: assess performance and operational effects
 - Develop control algorithms using testing platforms and baselined models


Component Development Tools and Test Facilities:

- Nuclear Energy Systems Laboratory Development Platform:
 - Create infrastructure to test third-party sCO2 Brayton devices
- Bearing and Seal Test Platform developed in collaboration with industry partners from recent FBOs.

Understanding Materials Issues:

- Selection and development for bearings/seal applications
- Leverage thermochemical and MD modeling:
 - Understand system chemistries
 - V&V with appropriate experiments
- sCO2 Materials Engagement need to be formalized:
 - FE-EERE-NE along with University and Industrial Partners
 - AUSC experience is a great model for this process

