

UNIVERSITY OF WISCONSIN

## WISC©2 High Temperature Energy Generation and Waste Heat Recovery



Study advance energy sources to increase efficiency and power output

- Fission-VHTR,FHR,SFR
- Fusion
- Concentrated solar
- Biomass
- Clean coal

Use or store energy to make use in different applications

- Electrical power generation
- Chemical processes
- Advanced oil recovery
- Grid power stabilization and utilization

Develop and integrate with new power conversion cycles

Reduce waste heat and promote Energy Utilization

- Improved efficiency
- Lower cost
- Smaller components
- Higher temperatures
- Lower water usage

- Use low quality waste heat
- Recycle heat from chemical process
- Backup power conversion

# Power Systems Research at UW WISC<sup>©</sup>2



Power Systems Engineering Research Center

- Eight Internationally
- **Recognized Faculty**
- 65 Current Graduate Students
- 450 MS & PhD s
- 90 Corporate Sponsors



Wisconsin Electric Machines and Power Electronic Consortium







- Power Systems Dynamics
- Electric Machines
- Power Electronics

### Microgrids, Advanced Distribution Networks and Energy Storage Solutions





- Enables greater efficiency and resiliency.
- <u>Helps address \$100B</u>
  in business losses due
  to power disruptions.

WISCĜ2

- Deployed at hospitals, military bases, factories, more
- Offers new products and supply chains for Wisconsin's electrical equipment manufacturers.

#### Working with several industrial partners including Johnson Controls

# UW Power Systems Lab at the Wisconsin Energy Institute

Small Scale Models of a Larger Grid

Johnson Controls Energy Storage System Test Lab

WISC<sub>©2</sub>



# **Materials Testing in sCO2**

## WISC<sub>\$2</sub>



15 <T\_rote < 150 [°C] 11 Test Section Throttle Valve Filling Pump Heater Coriolis Flowmeter



Advanced materials: SiC, ZrC-W



**Effects of Impurities** CO, O2, H2O, etc

Sample

Special thanks to Haynes and Special Metals for material and welded samples

# Wide Range of Materials Tested WISC<sup>3</sup>2

| Alloys        | Oxide                                                                                   | Number<br>Density               | overall corrosion rate                                                                                             | Comments                                                                                             |
|---------------|-----------------------------------------------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| IN740         | Elongated Nb-Ti rich oxide cluster<br>(50um)                                            | Low                             | ~1um-2um/year                                                                                                      | Excellent corrosion resistnace/ good strength at temp                                                |
|               | Cr rich oxide (<1um)                                                                    | High                            |                                                                                                                    |                                                                                                      |
| Haynes 282*   | No Current SEM data                                                                     |                                 | Not enough data to make a reasonable guess                                                                         | Excellent corrosion resistance up to 550C. More testing needed<br>for higher temperatures            |
| Haynes 625*   | Cr rich oxide present<br>Similar oxide layer to Hanes 230<br>alloy, more testing needed |                                 | 450C - <1um/year<br>550C - <1um/year<br>650C -1-4um/year                                                           | Good corrosion resistance. Needs to be looked at for higher temps.                                   |
| Haynes230     | Elongated W rich oxide cluster<br>(30um)<br>Cr rich oxide (<1um)                        | Medium<br>High                  | 450C - <1um/year<br>550C - <1um/year<br>650C - 2-5um/year                                                          | Good corrosion resistance. Needs to be looked at for higher temps.                                   |
| IN 617*       | No Current SEM data                                                                     | g.i                             | Initial weight gain data indicates similar corrosion rate to Haynes 625                                            | Good corrosion resistance up to 550C. More testing needed for higher temperatures                    |
| IN 718*       | No Current SEM data                                                                     |                                 | Initial weight gain data indicates similar corrosion rate to IN800H                                                | Good corrosion resistance up to 550C. More testing needed for higher temperatures                    |
| IN800H        | Ti oxide cluster (20um)                                                                 | Low                             | 450C - 1-2um/year<br>550C- 5 um/year Performed similar to 347 but cost is considerable higher<br>650C - 30 um/year | Performed similar to 347 but cost is considerable biober                                             |
|               | Cr-Mn rich oxide (<1um)                                                                 | High                            |                                                                                                                    |                                                                                                      |
|               | Octahedral Fe oxide cluster (30um)                                                      | Medium                          |                                                                                                                    |                                                                                                      |
| 347 <b>SS</b> | Nb oxide (<1um)                                                                         | Medium                          | 450C - 5um/year<br>550C- 5um/year<br>650C - 35um/year                                                              | Alloy performed pretty well at most temps - started to fall off at 650 not suitable for higher temps |
|               | Needle Cr-Mn rich oxide scale                                                           | Some spallation                 |                                                                                                                    |                                                                                                      |
|               | Octahedral Fe oxide cluster (20um)                                                      | High                            |                                                                                                                    |                                                                                                      |
| 316L          | Octahedral Fe oxide scale                                                               | 70% of surface                  | 450 C - 10um/year<br>550 C - 30-50um/year<br>650 C- 100um/year                                                     | Ok for lower temperatures 347 performed                                                              |
|               | Octahedral Cr-Mn rich oxide scale                                                       | 30% of surface                  |                                                                                                                    |                                                                                                      |
| AFA-OC6       | Nb oxide (<10um)                                                                        | High                            | 450C - 1-2um/year<br>550C- 5-10um/year<br>650C - 200um/year                                                        | Ok for low temperatures/ alloy somewhat unstable                                                     |
|               | Cr-Mn rich oxide (<1um)                                                                 | Very high                       |                                                                                                                    |                                                                                                      |
|               | Fe oxide (<10um)                                                                        | Low                             |                                                                                                                    |                                                                                                      |
| P91/T122      | Magnetite and spinel layers                                                             | 100% coverage<br>high corrosion | >1000mu/year                                                                                                       | not suitable for 450C+                                                                               |

\*Currently being tested at UW-Madison. Assumptions based on data from ongoing testing

### Low Temperature Alloys < 450° C **WISC**<sup>©</sup>2</sup> Carburization and Oxidation of T92 in sCO<sub>2</sub>



## **High Temperature Alloy Corrosion**



· Based on power fit equation:

 $W = \alpha t^b$ 

- Used time dependent data out to 1000 hours
- Used ratio of thickness to weight change from SEM to determine approximate thickness of oxide after 1 year





- Sample exposed to RG CO<sub>2</sub> showed no observable chromium depletion zone.
- Chromium depletion zone for oxygen doped exposure in red box on right.
- Chromium carbides found in both samples (indicated by red boxes on left side of both line scans).



WISCĜ2

Oxygen levels were recorded in  $CO_2$  gas before entering the testing autoclave (inlet), as well as at the exit of the autoclave for 650 and 750°C tests. (Plotted for 100ppm test above)





- Increase in chromium along grain boundary suggests presence of chromium carbide.
- Void formation and chromium depletion zone observed in EDS scan.
- Formation of Iron oxide and increase AI concentration observed in EDS mapping.
- No detected large carburization region in high Ni/Cr alloys

### Round Robin Materials Testing WISC<sup>2</sup> Collaboration with Different Institutions on a Global Scale

#### Working together to understand the materials issues

- Oregon State University: Julie Tucker
- University of Wisconsin-Madison: Mark Anderson
- Oak Ridge National Laboratory: Bruce Pint
- National Energy Technology Laboratory: Omer Dogan
- Carleton University: Henry Saari
- Korea Advanced Institute of Science and Technology: Changheui Jang
- CSIRO Energy Center: Rene Olivares
- Corrosion Coupon Support
- Electric Power Research Institute: Steven Kung & John Shingledecker



Testing 5 alloys at two different temperatures at each institution. 740H (700°C only) 625 316L HR120 Grade 91 (550°C only)







National Energy Technology Laboratory







## Separate effects tests and CFD analysis WISCO2

Heat exchangers, valves, seals, pumping, components, properties



Valve, seal, high speed flow test facility

600 °C / 1112 °F- 3600PSI In625 sCO2 Loop - 160GPM





Current setup of test facility

5 separate sCO2 materials corrosion autoclaves (800 °C /1472 °F, 4000psi)





### **Separate Effects Tests and CFD Analysis**

#### sCO<sub>2</sub> Heat exchanger testing

## WISC<sup>©</sup>2



3/26/2016

University of Wisconsin-Madison

#### Advanced Supercritical Carbon Dioxide Cycles M. Anderson/UW, M. Carlson/Sandia, R. Braun/CSM T. Neises/NREL, Z. Jia/Comprex, R. Gradle/FlowServe

#### **Technology Addressed**

Advanced Power Cycles for CSP

#### **Innovative Aspect**

Incorporate switched-bed regenerators in place or in addition of recuperative heat exchangers, into SCO<sub>2</sub> cycles. Decrease cost increase temperature options

#### Impact

- Reduce cost of component required for regenerative heat transfer
- Increase temperature with insulated pressure boundry
- Develop cost and performance models

#### **Background and Proposed Work**

- SCO<sub>2</sub> cycles have been shown theoretically and now experimentally to have several advantages with regard to CSP systems
- This project will focus on addressing the key technical challenges associated with their deployment
- Tasks include the design, fabrication, and demonstration of switched bed regenerators and high temperature valve solutions



WISCG2

High Temperature Recuperator From Comprex

High Temperature Regenerator

#### Larger Scale Testing and Outreach to Utilities, Industry and Public with regard to the benefits of sCO2 cycle.

https://energy.wisc.edu/wisco2/

**Charter Street Plant** 



Size, location, and Infrastructure for 10-20MWe sCO2 system tied to the local grid. **Facility Area of Interest** 

>10000 sq.ft. 24-7 operation Positioned in the heart of Wisconsin

(7)

