University R & D Session

KAIST Activities

2016.3.30

Jeong IK Lee

Associate Professor Dept. of Nuclear & Quantum Engineering, KAIST

Issues Studied in KAIST

- Larger power system requires higher specific power
- Advanced turbomachinery and heat exchanger design and analysis methodologies
- > New type of components or systems
- Fransient analysis (Startup, Shutdown, Incidents...)
- Specific Technical Issues to Specific Heat Source
- Critical Flow and Phase Change

> Materials

Increasing Specific Power

Turbomachinery Design & Analysis

Turbomachinery Design Issues

Heat Exchanger Design & Analysis

New Component

Tesla turbine

Conventional Turbine

Blade

Impulse & reaction force Well experienced, optimized

Characteristics

Need high quality clearance

No phase change allowed

Maintenance Difficulties

- A Tesla turbine will be tested in S-CO₂ power cycle expander operating conditions.
- The external pressure vessel allows to test in high pressure (>7.4 MPa)

Tesla turbine

Bladeless disc

Friction force

Low Pressure ratio (S-CO₂ cycle)

Manufacturing - easy and modularized design

Robust - Two phase, Sludge flow

Easy maintenance

New System

<With 8 fans and generator>

<MMR core design>

Transient Analysis for Control

Transient Analysis for Prediction

Nodalization diagram of the SCO2PE loop for GAMMA+

Specific Technical Issues to Sodium-cooled Fast Reactor Application

Fig. Potential Na-CO₂ interaction in Printed Circuit Heat Exchanger(PCHE)

Critical Flow and Phase Change

♦CO₂ critical flow modeling process

Fig. CO₂ critical speed measure instrument

♦CO₂ leak simulation results (T-s, h-s diagram, Mass flux of leaked CO₂)

			Exp_1	Exp_2	Exp_3
	High	P (MPa)	10.01	13.43	20.16
	Tank	T (°C)	103.3	161.5	151.2
	Low Pressure Tank	P (MPa)	0.101	0.101	0.101
350		T (°C)	14.5	15.6	14.1

Materials

Corrosion and carburization behavior

in S-CO₂ environments

- ✓ Corrosion tests in S-CO₂ environments (550-650°C, 200bar, max. 3000h)
- Evaluate the corrosion and carburization resistance in S-CO₂ environments
- Materials: Fe-base austenitic alloys, Ni-base alloys, FMS (9Cr)

Long-term properties of materials after

exposure to S-CO₂

- Microstructure evolution and resulting mechanical property (tensile test)
- ✓ Creep test in S-CO₂ environments (550-650°C, 200bar)

Corrosion and long-term properties of

diffusion-bonded PCHE materials

- Development of diffusion-bonding process for PCHE-type IHX
- Corrosion tests and mechanical property evaluation of diffusion bonded joints in S-CO₂ environments

