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Why Oxy Combustion?
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Oxy-Combustion

e Oxygen + fuel

 Direct fired sCO2
combustors have a
third inert stream

 Challenge:

— Mix and combust fuel
with out damaging
combustor
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Combustor Conditions
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Oxy-combustion

e Supercritical Oxy-combustion

— Combustion occurs at supercritical pressures (>74
bar)

— Required for direct fired sCO2 cycles, compatible
with indirect cycles

— Flue gas cleanup and de-watering at pressure may
be challenging

— Effects of residual water on other system
components unknown
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Direct Fired Supercritical Oxy-
Combustion

* Cycle analysis and optimization for large scale,
direct fired supercritical oxy-combustion for
power generation

— Based on engineering development and technology
assessment

— Target 52% plant efficiency to compete with NGCC

— Requires 64% cycle efficiency + balance of the plant
losses

— Turbine inlet near 1200°C
e All cycle configurations are compatible with an

auto-ignition style combustor for 1200°C Turbine
inlet temperatures.
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Kinetics Knowledge Base

Current Application

Pressure P up to 200 bar
Xco, Up to 0.96 (mostly as diluent)
Sparse data at high pressure, low CO, @

No data at high pressure, high CO,

Well-Developed Mechanisms Knowledge front

P up to 20 bar
Xco, < 0.10 (mostly as product)

Sparse data at low pressure, high CO,

>
CO, concentration

No data available at conditions relevant to this application.
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Reduced Order Model

 Equations based on Arrhenius rate equation
were tuned to match USC-Il model predictions

— Match auto-ignition delay
— Match residual CO levels
— Overall time to complete reaction

4 Species: 5 Reactions: 2 . N
a
CH,+150,>2H,0+4CO0 1, = A,T™e RT[CH,]?[0,]"
Ea
CO+0.50, > CO, r, = A,T"2e R [CO]%2[0,]?2 ,

Swil




Initial Combustor Concept
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Mixing vs. Kinetics Time Scales

e Kinetic time scales are

much smaller than - ymetics Model
physical mixing time L
scales o Il
e This means that domain ?m
must be much longer s I
than kinetics alone & o S
dictate o
e Use of CFD with finite \
rate chemistry captures ¢ 2 © @ ® w @ w W w
both these effects Time {ms)
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CFD Setup

* Ansys CFX 16.2
e Unstructured mesh

— Boundary layer and
injection region
refinement

— 4 million elements

— Mesh sizes from 2 to 17
million elements for
independence study
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Injector Hole Sizing

e Simple correlations
based on same
density fluids

e Informed iterative
sizing
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Inlet Geometries

1 Hole |
Aligned 2 Hole 4 Hole 22.5°
Clocked Clocked
(1:|H°Iied 4 Hole 4 Hole 11.25°
ocke Aligned Clocked

In all cases the smaller hole is
4Hole 45° the fuel delivery port and the
Clocked larger is the hole is the oxygen

port.

2 Hole
Aligned
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Temperature in 11.25° Clocked Case
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Temperature in 45° Clocked Case
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e Realization that we don’t
Agned need to inject oxygen and
fuel at same location

e Auto-ignition allows even
4 Hole 45° .
Clocked small concentrations of
fuel+oxidizer to react

Oxygen
Injection

Fuel
Injection

Change Injection Spacing

Clocked
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Fuel Injection 24in Upstream

e Fuel well mixed throughout combustor before oxygen
e Allows hydrocarbon “cracking” before oxygen injection
e Cooler max temperatures

e Very good mixing at outlet

 Very low unburnt fuel percentage
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Comparison of Results

Max. Wall Max. Temperature Percent

Temperature | Temperature Spread at Unburnt
(K) (K) Outlet Fuel
1-Hole Aligned 1,821 2,942 - 2.49
1-Hole Clocked 1,849 1,866 - 5.41
2-Hole Aligned 1,549 3,000 - 5.64
2-Hole Clocked 1,653 1,653 - 11.13
4-Hole 45° Clocked 1,468 1,541 123 6.25
4-Hole 22.5° Clocked 1,613 1,724 110 1.80
4-Hole 11.25° Clocked 1,604 1,740 98 2.68
4-Hole Aligned 1,593 1,885 134 2.27
4-Hole 45° Clocked (Modified Hole Size) 1,440 1,547 158 6.82
4-Hole 24" Upstream CH, Injection 1,474 1,474 78 2.77
4-Hole 12" Upstream CH, Injection 1,546 1,546 197 4.19
4-Hole 24" Upstream CH,, Injection 3% O, 1,476 1,476 66 1.92

e Four fuel ports located 24in upstream of
oxygen injection was the best design
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Refined Design Concept

Four 90°

fuel injection jets

Four 90°

O, injection jets

800°C CO, inlet

® Fuel injection plane
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Pressure vessel

Cold CO, — cooling

Refractory Liner

Fuel premixing zone
(jet-in-crossflow)

Metal support liner

Distributed reaction zone
(stabilized by autoignition)

Centerline
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QUESTIONS?
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