

OXY-COAL-FIRED CIRCULATING FLUID BED COMBUSTION WITH A COMMERCIAL UTILITY-SIZE SUPERCRITICAL CO₂ POWER CYCLE

Charles White , Wally Shelton, Nate Weiland, John Plunkett, David Gray

March 29, 2016

National Energy Technology Laboratory

Presentation Outline

• Overall Plant Cycle: Oxy-Coal-Fired Circulating Fluid Bed (CFB) + Power Cycle

- SOA (Commercially Available) SuperCritical (SC) Steam Rankine (3500 psig/1110°F/1150°F)
- Recompression SuperCritical Carbon Dioxide (sCO₂) Brayton (~5000 psig /1148°F)
- Advanced Ultra-SuperCritical (AUSC) Steam Rankine (3500 psig/1400°F/1400°F)
- Alternate sCO₂ Recompression Cycle Configurations
 - Reheat sCO₂ Case
 - Intercooled sCO₂ Case
 - Reheat and Intercooled Case
- Sensitivity Analyses to sCO₂ Operating Parameters
 - Overview of earlier sensitivity analysis
- Elevated Turbine Inlet Temperature Case (increases TIT to 1400°F)
- Summary and Conclusions
- Next Steps
- Acknowledgements
 - Study Group, Generic Heat Source Cycles, NETL Programs

Site Characteristics and Design Coal

- Generic Midwestern U.S. Plant,
- ISO ambient conditions
- Illinois No. 6

Elevation, ft	0
Barometric Pressure, psia	14.696
Design Ambient Temperature, Dry Bulb, °F	59
Design Ambient Temperature, Wet Bulb, °F	51.5
Design Ambient Relative Humidity, %	60

Location	A Greenfield site in the Midwestern United States ^a	
Topography	Level	
Size, acres	300	
Transportation	Rail and Road	
Ash Disposal	Off Site	
Water	Municipal (50%) / Groundwater (50%)	
Access	Land locked, having access by rail and highway	
CO ₂	Compressed to 15.3 MPa (2,215 psia), transported, and sequestered in a saline formation at a depth of 4,055 feet	
^a Champaign County, Illinois, is assumed for assessment of construction costs.		

Coal name	Illinois No. 6		
ASTM D388 Rank	High Volatile A Bituminous		
Proximate Analysis	As-received %	Dry %	
Moisture	11.12	0.00	
Volatile Matter	34.99	39.37	
Ash	9.70	10.91	
Fixed Carbon	44.19	49.72	
Total	100.00	100.00	
Ultimate Analysis	As-received %	Dry %	
Carbon	63.75	71.73	
Hydrogen	4.50	5.06	
Nitrogen	1.25	1.41	
Sulfur	2.51	2.82	
Chlorine	0.29	0.33	
Ash	9.70	10.91	
Moisture	11.12	0.00	
Oxygen	6.88	7.74	
Total	100.00	100.00	
Departed Heating Malus	As-received	Dry	
Reported Heating Value	Btu/lb (kJ/kg)	Btu/lb (kJ/kg)	
нни	11,666 (27,135)	13,126 (30,531)	
LHV	11,252 (26,171)	12,660 (29,447)	

Oxy-Coal-Fired Circulating Fluid Bed (CFB) SOA SuperCritical (SC) Steam Rankine (3500 psig/1110°F/1150°F)

Oxy-Coal-Fired Circulating Fluid Bed (CFB) Recompression SuperCritical Carbon Dioxide (sCO₂) Brayton (5000 psig / 1148°F)

Oxy-Coal-Fired Circulating Fluid Bed (CFB)

Recompression sCO₂ Brayton Cycle Parameters for Baseline Plant

Parameter	Value
Turbine Inlet Temperature	620 °C (1148 °F)
Nominal Compressor Pressure	5,015 psia
Turbine Exit Pressure	1,350 psia
Nominal Pressure Ratio	3.8
CO ₂ Cooler Temperature	35 °C (95 °F)
Turbine Isentropic Efficiency	92.7 %
Compressor Isentropic Efficiency	85.0 %
Cycle Pressure Drop	60 psia
Minimum Temperature Approach	6 °C (10 °F)
Nominal CO ₂ Cooler Bypass Fraction	To maximize recuperation

Oxy-Coal-Fired Circulating Fluid Bed (CFB) Performance comparison between sCO₂ Brayton and Steam Rankine cycle plants

Parameter	Rankine Steam Cycle (593 °C, 1100 °F)	sCO2 Brayton Cycle (620 °C, 1148 °F)
CFB Coal Flow Rate (klb/hr)	484	489
CFB Coal Flow Rate/Limestone Flow Rate	4.1	4.1
Turb Flow Rate / Rankine Steam Turb Flow Rate	1	9.9
Coal Thermal Input (MWt)	1655	1670
Power Cycle Thermal Input (MWt)	1497	1528
Fractional Thermal Input to Power Cycle	0.905	0.915
Net Power Cycle Output	723	727
Total Auxiliary Power Load	173	177
Net Power Output	550	550
Power Cycle Efficiency (%)	48.3	47.6
Net Plant Efficiency (HHV %)	33.2	32.9

Objectives

- Increase the fraction of plant thermal input that is captured in the sCO₂ cycle
- Increase the sCO₂ power cycle efficiency
- Decrease the sCO₂ plant auxiliary power requirement
- Provide some combination of above effects

Alternate Cycles

- Reheat sCO₂ Case
- Intercooled sCO₂ Case
- Reheat and Intercooled Case

Alternate sCO₂ Recompression Cycle Configurations Reheat sCO₂ Case

Alternate sCO₂ Recompression Cycle Configurations Performance comparison between Rankine and Recompression sCO₂ Brayton cycles with and without reheat

Parameter	Rankine Steam Cycle (593 °C, 1100°F)	Baseline sCO2 Brayton Cycle (620 °C, 1148 °F)	Reheat sCO2 Brayton Cycle (620 °C, 1148 °F)
CFB Coal Flow Rate (klb/hr)	484	489	467
CFB Coal Flow Rate/Limestone Flow Rate	4.1	4.1	4.1
Turb Flow Rate / Rankine Steam Turb Flow Rate	1	9.9	9.1
Coal Thermal Input (MWt)	1655	1670	1597
Power Cycle Thermal Input (MWt)	1497	1528	1461
Fractional Thermal Input to Power Cycle	0.905	0.915	0.915
Net Power Cycle Output	723	727	719
Total Auxiliary Power Load	173	177	169
Net Power Output	550	550	550
Power Cycle Efficiency (%)	48.3	47.6	49.3
Net Plant Efficiency (HHV %)	33.2	32.9	34.4

Alternate sCO₂ Recompression Cycle Configurations Intercooled sCO₂ Case

Alternate sCO₂ Recompression Cycle Configurations Performance comparison between Rankine and recompression sCO₂ Brayton cycles with and without main compressor intercooling

Parameter	Rankine Steam Cycle (593 °C, 1100°F)	Baseline sCO2 Brayton Cycle (620 °C, 1148 °F)	Intercooled sCO2 Brayton Cycle (620 °C, 1148 °F)
CFB Coal Flow Rate (klb/hr)	484	489	473
CFB Coal Flow Rate/Limestone Flow Rate	4.1	4.1	4.1
Turb Flow Rate / Rankine Steam Turb Flow Rate	1	9.9	9.1
Coal Thermal Input (MWt)	1655	1670	1619
Power Cycle Thermal Input (MWt)	1497	1528	1501
Fractional Thermal Input to Power Cycle	0.905	0.915	0.927
Net Power Cycle Output	723	727	722
Total Auxiliary Power Load	173	177	172
Net Power Output	550	550	550
Power Cycle Efficiency (%)	48.3	47.6	48.1
Net Plant Efficiency (HHV %)	33.2	32.9	34.0

Alternate sCO₂ Recompression Cycle Configurations Reheat and Intercooled Case

Alternate sCO₂ Recompression Cycle Configurations Performance comparison between Rankine, baseline sCO₂ recompression, and sCO₂ Brayton with reheat and main compressor intercooling

Parameter	Rankine Steam Cycle (593 °C, 1100°F)	Baseline sCO2 Brayton Cycle (620 °C, 1148 °F)	Reheat and Intercooled sCO2 Brayton Cycle (620 °C, 1148 °F)
CFB Coal Flow Rate (klb/hr)	484	489	457
CFB Coal Flow Rate/Limestone Flow Rate	4.1	4.1	4.1
Turb Flow Rate / Rankine Steam Turb Flow Rate	1	9.9	8.5
Coal Thermal Input (MWt)	1655	1670	1562
Power Cycle Thermal Input (MWt)	1497	1528	1448
Fractional Thermal Input to Power Cycle	0.905	0.915	0.927
Net Power Cycle Output	723	727	716
Total Auxiliary Power Load	173	177	166
Net Power Output	550	550	550
Power Cycle Efficiency (%)	48.3	47.6	49.4
Net Plant Efficiency (HHV %)	33.2	32.9	35.2

Sensitivity Analyses to sCO₂ Operating Parameters Overview of earlier sensitivity analyses

- NETL has conducted or reviewed multiple studies analyzing the performance of indirect cycles and the dependence on operating parameters. These studies examined the impact on cycle and system efficiencies for changes to operating parameters that include:
 - Turbine Inlet Temperature (TIT)
 - Maximum and minimum cycle pressures
 - CO₂ cooler temperature
 - Cycle pressure drop
 - Minimum approach temperature for recuperators
 - Turbo-machinery efficiencies
- Result TIT exerts the strongest impact on cycle efficiencies
- Additional Case changing the TIT from 620 °C, (1148 °F) to 760 °C, (1400 °F)

Alternate sCO₂ Recompression Cycle Configurations Performance Comparison with Elevated Turbine Inlet Temperature Case

Parameter	Rankine Steam Cycle (593 °C, 1100°F)	Reheat and Intercooled sCO2 Brayton Cycle (620 °C, 1148 °F)	Reheat and Intercooled sCO2 Brayton Cycle (760 °C, 1400 °F)
CFB Coal Flow Rate (klb/hr)	484	457	409
CFB Coal Flow Rate/Limestone Flow Rate	4.1	4.1	4.1
Turb Flow Rate / Rankine Steam Turb Flow Rate	1	8.5	6.8
Coal Thermal Input (MWt)	1655	1562	1398
Power Cycle Thermal Input (MWt)	1497	1448	1296
Fractional Thermal Input to Power Cycle	0.905	0.927	0.927
Net Power Cycle Output	723	716	698
Total Auxiliary Power Load	173	166	148
Net Power Output	550	550	550
Power Cycle Efficiency (%)	48.3	49.4	53.9
Net Plant Efficiency (HHV %)	33.2	35.2	39.3

Summary and Conclusions

Overall Plant Efficiencies (% HHV)

Summary and Conclusions

- Objective compare sCO₂ Recompression Brayton Cycle(s) to a SOA Steam Rankine Cycle.
- Performance determined for four configurations, all showing performance improvement.
- At the lower temperature (620 °C, 1100 °F), the most comparable sCO₂ Case (reheat and intercooled) to the Steam Rankine Case shows improvement in overall process efficiency of ~ 2 percentage points.
- At the higher temperature (760 °C, 1400 °F), the comparison to the Steam Rankine Cycle (620 °C, 1100 °F) improves in overall efficiency to ~ 6 percentage points.
- Further optimizations of the configurations considered may be required to demonstrated an economic advantage.

Next Steps

- Advanced Ultra-SuperCritical (AUSC) Steam Rankine Case
 - (3500 psig/1400°F/1400°F)

Economic Analysis

- Information from NETL sponsored programs + other sources for
- Component costs for key sCO₂ Cycle Components
- Cost sensitivity studies for key components

• Alternate Cycles

- Direct sCO₂ Cycles based on coal
- Hybrid Cycles, Cascade Cycles
- Condensing CO₂ Cycles
- Possible designs for pilot/demo plants

Acknowledgements

- Study Group:
 - Charles White, John Plunkett, David Gray (ESPA/Noblis Inc.)
 - Walter Shelton, Nathan Weiland (NETL/DOE)
- Generic Heat Source sCO₂ Cycles
 - White, C., Shelton, W., Dennis, R. (2014, September 9-10). An Assessment of Supercritical CO₂ Power Cycles Integrated with Generic Heat Sources. 4th International Symposium – Supercritical CO₂ Power Cycles: Pittsburgh, Pennsylvania.
- PFBC sCO₂ Cycles
 - G. Subbaraman, J. A. Mays, B. Jazayeri, K. M. Sprouse, A. H. Eastland, S. Ravishankar and C. G. Sonwane, Energy Systems, Pratt and Whitney Rocketdyne, ZEPS Plant Model: A High Efficiency Power Cycle with Pressurized Fluidized Bed Combustion Process, 2nd Oxyfuel Combustion Conference, Queensland, Australia, September 2011.
- NETL Programs / Financial Support
 - *sCO*₂ Component Development (references 1 8 of conference paper)
 - Material Research and Thermodynamic Properties (e.g. programs with ORNL)
 - NETL Internal sCO₂ System Studies (indirect and direct cycles, STEP program, reviews of literature studies)

Questions ??

Charles White Senior Principal

Noblis, Inc. Falls Church, VA U.S. Charles.White@noblis.org

Walter W. Shelton

Chemical Engineer U.S. DOE - NETL Morgantown, WV U.S. Walter.Shelton@netl.doe.gov

Nathan Weiland

Mechanical Engineer U.S. DOE - NETL Pittsburgh, PA U.S. Nathan.Weiland@netl.doe.gov