

Exergy Analysis of the Allam Cycle

Mathias Penkuhn, George Tsatsaronis

Technische Universität Berlin – Institute for Energy Engineering

mathias.penkuhn@iet.tu-berlin.de Supercritical CO₂ Power Cycles Symposium San Antonio, TX, March 29, 2016

Contents

1. Introduction

- 2. System Description
- 3. Methodology
- 4. Results
- 5. Conclusions

Mathias Penkuhn, George Tsatsaronis Supercritical CO₂ Power Cycles Symposium

Contents

Introduction

- Future power generation processes require CO₂ capture
- Technological options: post-combustion, pre-combustion, oxy-combustion
- Oxy-combustion facilitates the CO₂ capture
- High auxiliary power requirement for air separation (ASU)
- Traditional cycles are currently uneconomical
- Proposed Allam cycle recovers heat from ASU, reported efficiency of 59 % (LHV)
- Publicly available data is used for benchmarking the process by using conventional thermodynamic and exergy-based analysis methods
- Identification of main inefficiencies and possible improvement potential

Introduction

System Description

- Allam cycle is single, highly recuperated, high-pressure and high-temperature gas turbine cycle
- CO₂ at high purity is the main working fluid
- Natural gas operation, combustion with pure oxygen from ASU
- High purity CO₂ purge stream for further processing

Mathias Penkuhn, George Tsatsaronis Supercritical CO₂ Power Cycles Symposium

System Description

System Description – Aspen Plus Model

Mathias Penkuhn, George Tsatsaronis Supercritical CO₂ Power Cycles Symposium

System Description

System Description – Simulation Assumptions

- Data is taken from the literature if available
- Unknown parameters are specified using best practice modeling and benchmark guidelines (DOE NETL, IEA)
- Property data: Peng-Robinson, Lee-Kessler-Plocker
- Environment conditions: Midwest-ISO
- Different technological levels: base case, high and low efficiency assumptions for screening study

Methodology – Conventional Thermodynamic Analysis

- Application of heat and mass balances
- Known principle: high-temperature heat source and low-temperature heat sink results in high efficiency
- Application is however limited to single product processes
- Captured CO₂ as a by-product complicates the analysis
- Benchmark process, evaluation of impact of CO₂ capture on process efficiency
- High influence of modeling assumptions, usage of quality and benchmark guidelines

Methodology – Exergy Analysis

- Exergy is the maximum theoretical useful work obtainable as the system is brought into complete thermodynamic equilibrium with the thermodynamic environment
- Exergy can be destroyed in contrast to energy
- Consideration of the different qualities of energy (heat, work)
- Environmental conditions are explicitly taken into account
- Quantification of the real thermodynamic losses
- Calculation of meaningful efficiencies
- Supports the design synthesis and improvement process
- Exergy destruction, exergetic efficiency, exergy destruction ratio

Results – Thermodynamic Analysis

		Simulation Study			
Parameter		Base Case	High Efficiency	Low Efficiency	
Fuel Mass Flow Rate	[kg/s]	9.9	9.2	11.0	
Gross Power	[MW]	292.1	280.7	307.3	
Net Power	[MW]	250.0	250.0	250.0	
Efficiency (LHV)	[%]	53.4	57.2	47.9	

- The simulation model shows good agreement with literature data
- High efficiency case represents a possible configuration
- Model is highly dependent on recycle CO₂ recompression efficiency and pinch temperature differences
- Large interaction with ASU

Results – Exergy Flow Diagram

Mathias Penkuhn, George Tsatsaronis Supercritical CO₂ Power Cycles Symposium

Results

Results – Exergy Analysis

Simulation	Ba	ase Cas	e	High	Efficie	ency	Low	Efficie	ncy
	ĖD	ε	УD	ĖD	ε	УD	ĖD	ε	УD
Component	[MW]	[%]	[%]	[MW]	[%]	[%]	[MW]	[%]	[%]
C-1 Compressor	1.0	82.7	0.2	0.7	85.7	0.2	1.5	79.8	0.3
C-2 Compressor	11.0	56.9	2.3	8.2	50.1	1.8	15.4	67.2	2.8
C-3 Compressor	4.0	83.5	0.8	2.2	89.0	0.5	6.5	78.3	1.2
C-4 Compressor	5.0	77.9	1.0	3.4	82.0	0.7	7.3	73.8	1.3
C-5 Turbine	29.0	93.3	6.0	28.7	92.8	6.3	30.2	93.8	5.6
P-1 Pump	10.5	63.6	2.2	8.1	68.2	1.8	12.4	59.6	2.3
E-1 Heat Exchanger	5.4	32.2	1.1	4.9	34.8	1.1	5.5	29.5	1.0
E-2 Heat Exchanger	3.8	20.0	0.8	3.0	22.2	0.7	4.9	18.3	0.9
E-3 Heat Exchanger	11.8	96.9	2.4	11.4	96.8	2.5	16.7	96.1	3.1
R-1 Combustor	105.4	78.0	21.6	97.1	78.3	21.3	118.9	77.7	21.9
V-1 Separator	3.8	71.8	0.8	1.0	89.6	0.2	12.5	48.4	2.3
G-1 Generator	4.0	99.0	0.8	3.7	99.0	0.8	4.5	99.0	0.8
Auxiliary Units	19.7	53.1	4.0	11.2	63.5	2.5	30.6	46.6	5.6
Overall Cycle	214.4	51.3	44.0	183.6	54.9	40.4	266.9	46.0	49.1

Mathias Penkuhn, George Tsatsaronis Supercritical CO₂ Power Cycles Symposium

Results

Results – Recuperator

Mathias Penkuhn, George Tsatsaronis Supercritical CO₂ Power Cycles Symposium

Results

Results – Sensitivity Analysis: TIT (ISO)

Results – Sensitivity Analysis: Turbine Efficiency

Results

Results – Sensitivity Analysis: Recompression Efficiency

Supercritical CO₂ Power Cycles Symposium

Results

Results – Sensitivity Analysis: Dilution Oxygen Fraction

Results – Sensitivity Analysis: Recuperator

Supercritical CO_2 Power Cycles Symposium

Results

Results – Sensitivity Analysis: Coolers

Supercritical CO₂ Power Cycles Symposium

Results

Discussion

- High efficiency of the cycle at reasonable component parameterizations
- A certain component efficiency (turbomachinery, pinch temperature difference) is required for cycle to achieve high efficiencies
- Combustor, turbine, recuperator, CO₂ recompression and ASU have the highest exergy destruction
- Improvement potential is found considering the combustor-turbine section, recuperator and CO₂ recompression section
- Exergy analysis indicates that the recuperator effectively decouples the two pressure levels
- Exergetic efficiency/exergy destruction ratio of the main cycle components is comparable to other oxy-combustion cycles
- Cycle simplicity is a major advantage

Conclusions

- The Allam cycle is a promising cycle configuration to combine high-efficiency power generation with CO₂ capture
- Exergy analysis has shown that the largest inefficiencies are found within the main cycle
- Potential for improvement has been identified
- Study is a starting point for more detailed studies considering ASU and CO₂ purification and compression
- Exergy-based methods are to be further employed to understand the component interactions and the thermodynamic-economic implications.

Appendix – Midwest ISO and Exergy Model Definition

• Thermodynamic Environment

Site Conditions	Air Composition			
Model Ambient Pressure Ambient Dry Bulb Temperature Ambient Wet Bulb Temperature Relative Humidity Cooling Worker Temperature	Midwest ISO 1.01325 bar 15.0 °C 10.8 °C 60 %	Nitrogen (N_2) Oxygen (O_2) Argon (Ar) Carbon Dioxide (CO_2) Water (H_2O)	0.7732 mol/mol 0.2074 mol/mol 0.0091 mol/mol 0.0003 mol/mol 0.0100 mol/mol 28 854 kg/kmol	

• Exergy Model (Thermodynamic Environment)

Ambient Temperature	15 ° C
Ambient Pressure	1.01325 bar
Chemical exergy model	Szargut (1988)

Modeling Parameter Assumptions

Parameter		Base Case	Variation
Turbine Inlet Temperature (ISO)	°C	1150	± 0
Turbine Inlet Pressure	bar	300	± 0
Turbine Pressure Ratio	-	0.1	± 0
Combustor R-1, Outlet Temperature	°C	1300	± 100
Combustor R-1, Pressure Drop	%	1.6	± 0
Combustor R-1, Heat Loss	%	1.0	± 0
Oxygen Purity	%	99.5	± 0
Excess Oxygen	%	2.0	± 0
O_ Fraction (Molar) after Dilution	%	22.5	± 7.5
Pump P-1, Efficiency	%	75	± 5
Pump P-1, Mechanical Efficiency	%	98	± 0
Compressor C-1-C-4, Polytropic Efficiency	%	80	± 5
Compressor C-1-C-4, Mechanical Efficiency	%	98	± 0
Motor Efficency	%	97	± 0
Generator G-1, Efficiency	%	99	± 0
Heat Exchanger E-1, E-2, Pinch Temperature Difference	K	7.5	± 2.5
Heat Exchanger E-1, E-2, Pressure Drop (gas)	%	2	± 0
Heat Exchanger E-1, E-2, Pressure Drop (liquid)	%	4	± 0
Heat Exchanger E-3, Pinch Temperature Difference	K	3	± 2
Heat Exchanger E-3, Pressure Drop	%	2	± 0
Separator V-1, Pressure Drop	%	2	± 0
Cooling Water Range	K	11	± 0
Cooling Tower Fan Power Demand	W/m ³	197.5	± 0
ASU. Specific Power Demand	kWh/kgo2	250	± 50
CO ₂ Purification, Specific Power Demand	kWh/kg _{CO2}	50	± 25