Exceptional service in the national interest

Short Duration Corrosion Performance of Carbon Steels in SCO₂ at 260°C

Matthew Walker, Alan Kruizenga, Elizabeth Withey, Darryn Fleming, Jim Pasch

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-15095PE

Leading the development of a game-changing technology

SCO₂ Recompression Brayton Cycle (RCBC)

- SCO₂ is a highly recuperative cycle: projected capital costs expect 40-60% of cycle cost due to heat exchangers
- Can cost savings be achieved in other areas of the system?

Leading the development of a game-changing technology

SCO₂ Recompression Brayton Cycle (RCBC)

- SCO₂ is a highly recuperative cycle: projected capital costs expect 40-60% of cycle cost due to heat exchangers
- Can cost savings be achieved in other areas of the system?

- System Piping
 - Significant portion at < 260°C (573K)
- Pipe wall thickness similar for carbon steel as for 316 (~ 0.25 inches)^[A]
- Carbon steel ~ 44% cheaper than 316

Expanding SCO₂ materials testing capabilities at Sandia

SCO₂ Materials Test Facility

- Test Volume size: 2"x 24" (cylinder)
- Up to 650°C, 3500psi
- CO₂ currently, also other fluids possible

Facility used to test materials performance over operational range of system requirements.

Determining suitability of mild steel for the Brayton cycle

Materials and Test Exposure

Per the Power Piping code (ASTM 31.1):

- X65Q
- A53, A106, and API-5L
- Seamless Low-Carbon Alloy
- Limited to 427°C (code indication carbide phase may be converted to graphite)

Fe	С	Mn	Р	S	Si	Cu	Ni	Cr	Мо	AI	V	В	Ti	Nb
Bal	0.15	0.97	0.012	0.003	0.18	0.09	0.05	0.07	0.11	0.31	0.034	0.0003	0.003	0.002

Samples were removed at:

- 506 hours
- 995 hours
- 1481 hours
- 1984 hours

Exposure was 263±3°C 2550±35 psia

Industrial Grade CO₂ (99.5% Purity)

Consistent trend among the measurement approaches

Sample Corrosion Versus SCO₂ Exposure Time

Corrosion products are non-uniform and multilayered

Oxidation Layer Morphology versus SCO₂ Exposure Time

2000 hrs

Internal Oxide Layer Growth --> Increased Corrosion Rate

Oxidation Layer Thickness versus SCO₂ Exposure Time

Raised Area

Characterization of surfaces reveals separate oxide phases

Summary of XPS and Raman Surface Analyses

- Surface layer is Hematite (Fe₂O₃) --- XPS reveals only Fe³⁺ at the surfaces
- Raman and XRD indicate the presence of both Hematite (Fe_2O_3) and Magnetite (Fe_3O_4)
- Combination of these analyses reveals a bi-layer structure with corrosion being dominated by Magnetite growth over time

Results consistent with mild steel corrosion in CO₂

Behavior of Mild Steel during CO₂ Exposure

Low corrosion rate merits consideration in SCO₂ systems

Summary of Results

- Weight loss data used to determine:
 - Time to breakaway ~ 1500 hrs
 - Post-Breakaway Corrosion Rate: 0.032 mm/year (1.25 mils/year)
- Applicability of mild steel for components in SCO₂ Brayton cycles
 - Low corrosion rate projects long lifetime for parts
 - Susceptibility of scale to spalling is a concern as it grows thicker; this could lead to component erosion ---- Need to look at longer term exposure

Identifying Material Options for a 10 MW RCBC Systems

10 MW System Component Materials Selection for TIT's 550°C and 700°C

- Defining exposure conditions and performance requirements
- Identification of alloys and their characteristics that satisfy the performance requirements for each component

TIT = 550°C, Wet Cooling

Understanding and Resolving Turbine Degradation

Turbine Degradation Root Cause Analysis (RCA)

- RCA conducted in February 2016 provided many possible causes of turbine degradation
- Next phase is to prove/disprove prioritized list of causes

Computed Tomography (CT) being used to identify turbine degradation

Identifying Bearing Foil Material Behavior in CO₂

Bearing Foil Experimental Plans

Source	Temperature, °C	Pressure, psi	Duration, hrs		
Mohawk Innovative Technologies					
Xdot Engineering and Analysis	315, 550	300	500, 1000, 1500, 2000		
Baseline					

Measurements (Pre + Post Exposure):

- Microstructure of base metal plus coating
- Coating adhesion strength
- Coating surface roughness
- Coating coefficient of friction

Identifying Gas Chemistry Influence on Alloy Corrosion

Multiple Approaches to Gas Chemistry Understanding

Corrosion experiments

- Alloys: 625, 316, HR120, Grade 91, T22
- T = 550°C
- Pressure = 1 atm
- Duration = 500, 1000, 1500, 2000 hours

CO ₂	СО	02	H ₂ O	H ₂	CH₄
Research Grade 99.999%	< 2ppm	< 2ppm	< 1ppm	< 2ppm	< 4ppm
Industrial Grade 99.5% *	А	В	С	D	E
99.5%	0.5%				
99.5%		0.5%			
99.5%			0.5%		
99.5%				0.5%	
99.5%					0.5%
* Need to measure gas for specific impurity concentrations					

Thermochemical modelling of gas chemistry - alloy interactions using FactSage

- Molecular dynamics simulations of interfacial processes
 - Simulations up to 850 K are underway to understand the interaction of CO₂ with Fe and Ni surfaces
 - Impurity gases / alloy constituents will be included later

Questions?

Backup Slides

Two approaches for determining extent of corrosion

Corrosion Measurements

- Post-exposure sample weight gain measurements
- Measuring corrosion products through descale chemical treatment
 - Three descale solutions evaluated (ASTM G1-03)

Solution	Solution Temp (°C)	Cycles	Cycle Duration (min)
6M HCI (21 wt %)	20-25	6	10
6M HCI (21 wt %) + Hexamethylene tetramine (0.3 wt %)	20-25	6	10
Diammonium Citrate (20 wt %)	75-90	6	10

XPS

XRD

Raman

500 h Raman

Raman, 2000h sample

Both phases exist in the 2000 samples

