

Materials Performance in Supercritical CO₂ in Comparison with Atmospheric CO₂ and Supercritical Steam

The 5th International Symposium - Supercritical CO2 Power Cycles March 28-31, 2016, San Antonio, TX Gordon R Holcomb, Ömer N. Doğan, Casey Carney, Kyle Rozman, Jeffrey A. Hawk, and Mark Anderson

Acknowledgements

University of Wisconsin-Madison Collaboration

- Arjun Kalra and Paul Brooks

• Funding and Support

 This work was funded by the Advanced Combustion Program at the National Energy Technology Laboratory (Richard Dennis and Daniel Driscoll, Technology Managers and Briggs White, Project Monitor). The Research was executed through NETL's Research and Innovation Center's Advanced Combustion Field Work Proposal.

• Disclaimer

- "This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof."

Outline

Background

- Power cycles utilizing sCO₂
- Comparison with steam system parameters

sCO₂, sH₂O, and aCO₂ Oxidation

- Experimental procedures
- Results
- Comparisons with other results
- Summary/Conclusions

sCO₂ Power Cycles

J.P. Gibbs et al., MIT Report, MIT-GFR-037, 2006

Cycle/Component		Inl	et	Outlet		
		Т (С)	P (bar)	Т (С)	P (bar)	
ct	Heater	450-535	10-100	650-750	10-100	
Indire	Turbine	650-750	200-300	550-650	80-100	
	НХ	550-650	80-100	100-200	80-100	
ţ	Combustor	750	200-300	1150	200-300	
irec	Turbine	1150	200-300	800	30-80	
Δ	НХ	800	30-80	100	30-80	

Coal-based Steam Systems and Efficiency

Steam conditions and net plant efficiencies for pulverized coal power plants							
Nomenclature	Conditions	Net Plant Efficiency (HHV)					
Subcritical	2400 psi/1050°F/1050°F	35%					
	(165 bar/566°C/566°C)						
Supercritical (SC)	3600 psi/1050°F/1075°F	38%					
	248 bar/566°C/579°C)						
Ultra-Supercritical (USC)	>3600 psi/1100°F/1150°F	>42%					
	(>248 bar/593°C/621°C)						
Advanced Ultra-Supercritical	4000-5000 psi/1300-1400°F	>45%					
(A-USC)	(276-345 bar/704-760°C)						

adapted from EPRI Report 1022770, 2011

Categories are materials related, largely due to creep strength

- USC: advanced ferritic & austenitic steels required
- A-USC: nickel-base superalloys required

Each 1% increase in efficiency eliminates ~1,000,000 tons of CO₂ emissions over the lifetime of an 800-MW plant

Viswanathan, Armor, and Booras, 2003

Creep Rupture Advantages of Ni-Base Superalloys

Shingledecker, Purgert, and Cedro, 2013

sCO2 Components/A-USC Conditions

	Nomenclature	Conditions	
I	Subcritical	2400 psi/1050°F/1050°F	Similarities in
	Supercritical (SC)	(165 bar/566°C/566°C) 3600 psi/1050°F/1075°F	temperature and
	Illtra-Supercritical (IISC)	248 bar/566°C/579°C)	pressure suggests
		(>248 bar/593°C/621°C)	similar alloy
	Advanced Ultra-Supercritical (A-USC)	24000-5000 psi/1300-1400°F (276-345 bar/704-760°C)	candidates

adapted from EPRI Report 1022770, 2011

Cycle/Component		Ini	et	Outlet		
		T (C)	P (bar)	Т (С)	P (bar)	
ţ	Heater	450-535	10-100	650-750	10-100	
dire	Turbine	650-750	200-300	550-650	80-100	
Ē	ΗХ	550-650	80-100	100-200	80-100	
Ţ	Combustor	750	200-300	1150	200-300	
irec	Turbine 1150		200-300	800	30-80	
	HX	800	30-80	100	30-80	

Alloys and Samples

Alloy	Fe	Cr	Ni	Со	Мо	Si	Ti	AI	Mn	Cu	V	Nb	С
347H	Bal	17.6	9.1	0.1	0.2	0.3			1.1	0.1	0.1	0.7	0.05
282	0.2	19.4	Bal	10.1	8.7		2.2	1.4					0.06
625	3.4	22.1	Bal		8.9	0.1	0.2	0.1	0.1	0.2		3.3	0.05

Compact Tension Specimens Nominally 22 × 23 × 3 mm

Ground surfaces to 600 grit

Triplicate Specimens in each test

Experimental Conditions for 500 h Tests

Test	T, °C	P, bar	Environment	ρ, g/cm³	u, cm/min	Re
sCO ₂	730	207	99.999% CO ₂	1.04×10 ⁻¹	0.40	10.4
sH ₂ O	726	208	Deaerated H ₂ O	4.77×10 ⁻²	0.21	1.8
aCO ₂	730	1	CO_2 with 0.25% O_2	5.28×10 ⁻⁴	33.0	4.8

Results

- Mass change
- Surface SEM
- Glancing angle (1.5°) XRD
- Cross-section SEM

Approximate X-Ray Area

System for sCO2 Exposures

ENERGY National Energy Technology Laboratory

USC Autoclave for sH2O Exposures

Flow Rate Controlled by Pump

Pressure Controlled by Back Pressure Regulator

Autoclave

High Pressure Side
Autoclave 1 Liter 6.35 cm ID 31.75 cm L

Mass Change Results

Mass Change, mg/cm²

spalling, so not used in plots or k_p calculations

Surface SEM – 347H

^{*}Glancing angle XRD confirms Cr_2O_3 and M_3O_4 as the primary surface phases

Chromia with nodule formation of Low Cr oxides Scale spalling tendencies

Cross-section SEM – 347H

- Protective oxide in sCO₂
- Less protective oxides in sH₂O and aCO₂
- Will show later that this switch from protective oxidation is typical

Surface SEM - 282

10 µm

10 µm

Chromia scale with TiO₂ on outer surface

*Glancing angle XRD confirms Cr₂O₃ and TiO₂ as the primary surface phases

Secondary Electron Images 15

Cross-section SEM - 282

- Protective chromia scale thicker in sH₂O
- Internal oxidation deeper and more extensive in CO₂

EDS Mapping of 282 in sCO₂

Surface SEM - 625

*Glancing angle XRD confirms Cr₂O₃ as the primary surface phase

Secondary Electron Images 18

Cross-section SEM - 625

- Other 2 replicates in sH₂O had much smaller mass gains and chromia was detected on the surface by XRD
- Bright second phases are Nb/Mo rich

Parabolic Behavior

• Parabolic rate constants were estimated using

$$k_p = \frac{\Delta M^2}{2t}$$

- Where ΔM is the mass change and t is the time
- Time series tests are planned to verify such behavior
- Not applied in cases where spalling was evident

300 Series (18Cr-8Ni)/E-Brite

- Similar behavior in both sH₂O and sCO₂ (but note the gap in sCO₂)
- A variable increase in oxidation of fine-grain alloys with pressure
- Variability arises from Fe-rich nodule formation and lateral growth to disrupt protective chromia scale

H₂O adapted from the compilation of Wright & Dooley (2010), plus Holcomb (2014) and Holcomb (2016) sCO₂ adapted from Furukawa (2011), Cao (2012), Pint (2014), Lim (2008), Olivares (2015), Dunlevy (2007), and Lee (2015)

Ni-base Alloys

- The highest pressures in sH₂O show an increased oxidation rate
- No evidence of increased oxidation rates at high pressure in sCO₂ (at temperatures of interest)
- 625 has ~8000 h in a steam superheater at ~713°C/190 bar with good performance Knödler (2014)

H₂O adapted from the compilation of Wright & Dooley (2010), plus Knödler (2014), Holcomb (2014) and Holcomb (2016) sCO₂ adapted from Pint (2014), Dunlevy (2007), Lee (2014, 2015), Firouzdor (2013), Dheeradhada (2015), and Mahaffey (2015)

Effect of Pressure in Steam for Ni Alloys

- Arrhenius behavior used to translate oxidation data to a 700°C basis
- Oxide defect models tend to predict $k_p \propto P_T^X$
- Better fit with log $k_p \propto P_T$

Effect of Pressure in Steam for Austenitics

- Arrhenius behavior used to translate oxidation data to a 700°C basis
- Oxide defect models tend to predict $k_p \propto P_T^X$
- Fine Grain Alloys: Better fit with log $k_p \propto \log P_T$ ($k_p \propto P_T^{1.13}$)
- Coarse Grain Alloys: No measurable dependence on pressure

Summary/Conclusions

- High Pressure sH₂O and sCO₂ Exposures
 - Over 200 bar and 726-730°C
- Preliminarily Results Indicate:
 - Nickel-base alloys
 - Unlike in sH₂O, there is no evidence of significant increased oxidation rates at high pressure in sCO₂
 - Fine-grain austenitic steels
 - Similar increase in oxidation with pressure in both sH₂O and sCO₂
 - More Fe-rich oxide nodule formation with pressure
 - Variability in results associated with nodule formation/lateral growth
 - Coarse-grain austenitic steels
 - No measurable increase in oxidation with pressure in sH₂O
 - Not examined in sCO₂