

Supercritical CO₂ Brayton Power Cycles Potential & Challenges

Dr. Jeffrey N. Phillips Senior Program Manager

5th International Supercritical CO₂ Power Cycles Symposium March 30, 2016

Foundational Assumptions

- The CO₂/climate change issue is not going away
- Fossil fuels are not going away
- More power from renewable energy is coming

Figure 83. World net electricity generation by fuel,

- Lower CO₂ emissions from fossil fuelbased power => higher efficiency fossil fuel power plants
- Lower cost power from renewable energy sources
- Lower cost power from nuclear energy
- Increased operating flexibility from all power plants

U.S. Coal Power Plant Thermal Efficiency Over Time

© 2016 Electric Power Research Institute, Inc. All rights reserved.

Evolutionary versus Revolutionary Improvements

Evolutionary Path

- Make the technologies we already know better
- Incremental improvements
- Faster to market
- Lower risk of failure

Revolutionary Path

- Fundamentally change the way we make power
- Bigger potential for improvement
- Takes longer to bring to commercial reality
- Bigger risk of failure

Fossil Power: Two Approaches to Lower CO₂ Emissions

Evolutionary

- Steam-Rankine cycles
 - Higher efficiencies via hotter steam temperatures (advanced ultra-supercritical steam conditions)
 - Improved post-combustion CO₂ capture processes
- Air-Brayton cycles
 - Higher efficiencies via hotter gas turbine inlet temperatures
 - Improved pre- or post-combustion CO₂ capture

Revolutionary

- Closed Brayton cycles using supercritical CO₂ (sCO₂) as the working fluid
- Oxy-combustion with steam-Rankine or open sCO₂ Brayton power cycles
 - Includes chemical looping
- Fuel cells
 - Using natural gas or coal-derived syngas
- Other novel cycles
- Bulk energy storage
 - Allows best fossil plants to operate at optimum efficiency while others are retired

sCO₂ Brayton Power Cycles Appear to Offer Efficiency Advantages

But....

Power Cycle Comparison (Typical)

	Steam-	Open Air	Closed sCO ₂
	Rankine	Brayton	Brayton
Working Fluid	Steam/water	Air	CO ₂
Compressor/Pump Inlet	0.01 MPa	0.1 MPa	7.5 MPa
Pressure	(1 psia)	(14.5 psia)	(1087 psia)
Turbine Inlet Pressure	30 MPa	2 MPa	32 MPa
	(4350 psia)	(290 psia)	(4640 psia)
Turbine Pressure Ratio	3000	35	4.3
Turbine Inlet Temperature	600°C	1350°C	600°C
	(1112°F)	(2462°F)	(1112°F)
Turbine Outlet Temperature	38°C	530°C	500°C
	(100°F)	(986°F)	(932°F)

sCO₂ Brayton-Rankine Cycle Comparison

sCO₂ Brayton Power Cycle Features:

- Primary heaters add heat at higher average temperature
 - Good for efficiency, challenging for heater design
- Power per unit mass flow is low
 - CO₂ mass flow is ~5x steam mass flow
- Heat rejection at comparatively high temperatures
 - Would facilitate use of air-cooled condensers

sCO₂ Brayton Cycle Heat Exchanger Classes

Similar components for cascading and direct-fired Brayton power cycle configurations

Primary Heat Exchangers

 Due to higher mass flow and greater power consumption for fluid pressurization, sCO₂ Brayton power cycles must minimize pressure drop within the heat exchangers

Challenge is to achieve uniform flow/heat absorption for much higher flows and lower allowed pressure drops than steam generators

ELECTRIC POWER RESEARCH INSTITUTE

Primary Heater

Recuperators

High heat duty makes for large area heat exchangers

High temperature requires more exotic materials = \$, £, ¥, €

Recuperators (cont.)

- High cycle efficiency requires high U₀A
 - Some (limited) opportunities to increase heat transfer coefficient (U₀)
 - Compact heat exchangers reduce weight/U₀A (reducing materials cost) but are generally associated with higher manufacturing costs

Compressor Inlet Cooler

Similar in design to compressor inter-coolers

- Coolant is outside of the tubes compared with coolant flowing within the tubes in Rankine cycle condensers
- Direct-fired cycles include condensation/water removal
 - Materials challenge due to potential for acidic condensate due to H₂CO₃, etc.

Compressor Inlet Cooler

Flexible Operations

- Will sCO₂ Brayton power cycles be able to operate in tomorrow's power market?
 - Respond quickly to changes in demand?
 - Wide turndown capability?
 - Good heat rate at lower loads?
- It is probably too early to answer these questions definitively
- Important that upcoming sCO₂
 Brayton power pilot plants
 help answer these questions

In Conclusion

- Power industry is seeking higher efficiency power cycles: sCO₂ Brayton power cycles show promise to deliver on this goal
- Recuperators will be the primary cost adder compared to steam-Rankine power plants
 - Also the key to delivering higher efficiency
 - Least-cost approach to recuperation is yet to be demonstrated
- Primary heater designs confront hydraulic/heat transfer challenges not present in steam generators
- Need to also gain insight into flexible operating capabilities of sCO₂ Brayton power cycles
- Many opportunities for clever engineers and scientists!

Together...Shaping the Future of Electricity

