Development Of The sCO₂ Allam Cycle

50MWth Demonstration Plant Update

Supercritical CO2 Power Cycles Symposium

March 28th, 2016

Jeremy Fetvedt

Chief Engineer, 8 Rivers Capital

RIVFRS

sCO2 Cycle Development: A tipping point?

Tremendous growth of interest and support over the last decade

- 2007 sCO2 Symposium: 10 Presentations
- Today: 74 Papers; 24 Posters; 24 Sessions
- sCO₂ Focused Track at ASME
- Increased R&D opportunities across the DOE labs

Knowledge has moved from the theoretical to the experimental

- Subscale components have undergone testing
- Subscale integrated cycles have been demonstrated

The next phase: scaling up to larger demonstrations

- Department of Energy STEP Facility
- NET Power's 50MWth demonstration plant

RIVFRS

The NET Power Demonstration Program Overview

8 Rivers invented the Allam Cycle and has been developing it since 2009.

NET Power was created to commercialize the natural-gas-fueled configuration of the Allam Cycle.

- Owned by 8 Rivers, Exelon Corporation and CB&I.
- Partnered with Toshiba to develop a new turbine for the cycle.
- \$140M committed to cycle development, demonstration, and commercialization; demonstration effort is fully-funded.
- Program has demonstrated novel combustion system for the cycle at 5MW.
- Construction has begun on a 50MWth demonstration plant in Texas.
- NET Power in discussions for commercial plants.

8 Rivers continues to advance the development of the Allam Cycle across a variety of configurations and fuel sources.

Allam Cycle Overview

RIVFRS

Key Considerations for New CO₂ Cycle Design

- Direct-fired oxy-fuel approach helps generate a CO₂ working fluid
- A higher concentration of CO₂ enables more efficient use of the working fluid and requires less cleanup for pipeline transport
- Recuperation keeps heat available in turbine exhaust within the system and increases CO₂ concentration
- CO₂ has large thermodynamic property differences as the pressure difference increases between the streams, extra heat is needed if the critical pressure is crossed.
- The "ASU Problem" has to be adequately addressed and overcome

Natural Gas Cycle P-h Diagram

8 RIVERS

Simplified Mass-flow Diagram

Cycle Performance

The Alla	im Cycle Natural G	as vs. Combined Cy	cle: Efficiency Com	parison			
	HHV		LHV				
Energy Components	F-Class US NGCC Plant (0% CC)*	Allam Cycle NG Plant (100% CC)	F-Class US NGCC Plant (0% CC)*	Allam Cycle NG Plant (100% CC)			
Gross Turbine Output	51.06%	74.65%	58.7%	82.7%			
CO ₂ Compressor Power	mechanically coupled)	-10.47%	mechanically coupled)	-11.6%	Parasitic Loa	ad	
Plant Parasitic Auxiliary Power	-0.86%	-11.01%	-1.2%	-12.2%	\dashv	Breakdow ASU	n 91.8
Net Efficiency	50.20%	53.17%	57.5%	58.9%		NG Compressor	8.2

*Performance data from NETL Cost and Performance Baseline Report, 2013.

Allam Cycle Development Status

Most Components are Commercially Available

5MWth Natural Gas Combustor Testing was Successful

8 RIVERS

8 RIVERS

The Next Step is a 50MWth Demonstration Plant

- Construction is underway
- Commissioning expected to begin in Q4 2016
- First fire expected in early 2017
- Site leased from Air Liquide in La Porte, TX
- All major equipment has been ordered
- A full plant simulator is currently in development

Plant Overview

- Plant design scaled down from 500MWth pre-FEED design to ensure scalability to commercial size
- Plant includes all core components of the Allam Cycle
 - Combustor/turbine, heat exchangers, pumps and compressors, control system, and ancillary equipment
 - Plant will undergo full performance evaluation (startup, shutdown, ramping, hot/warm/cold starts, emergency operations)
 - Oxygen will be pulled from a pipeline as opposed to a dedicated ASU
 - CO₂ will be generated at high pressure and quality, but will be emitted
 - CO₂ off-take found to be impractical for variable testing operation period
 - CO₂ quality will be confirmed and monitored to ensure viability for commercial facility

8 RIVERS

Demonstration Plant Rendering

Construction of the Plant is Underway

The Turbine is Being Manufactured

Development has Begun on the Commercial System

- Pre-FEED has been completed on a 500MWth natural gas commercial design
 - Proceeding to FEED as next step
- NET Power is engaged with power generators around the world on development work
 - Working with customers on development needs in the 2019-2025 timeframe
 - Some customers have already purchased sites
- Targeting Plant Completion by late 2019.

THANK YOU

Jeremy Fetvedt

Jeremy.Fetvedt@8Rivers.com

919-667-1800

