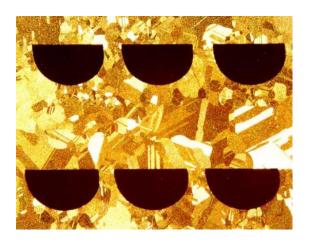
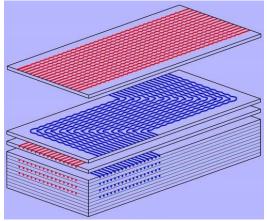
High Effectiveness, Compact, High Pressure and Low-Cost Recuperator


The Fifth International Symposium – Super-Critical CO2 Power Cycles, March 28-31, 2016, San Antonio, Texas

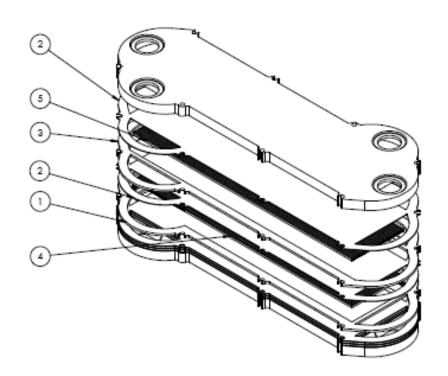

> By Altex Technologies Corporation 244 Sobrante Way Sunnyvale, CA 94086

> > March, 2016

High Pressure Recuperative Heat Exchangers

- Many small channels maximize heat transfer for compactness
- Platelets allow bonding to a strong structure for high pressure capability
- Chemical etch or micromachining channels are costly processes
- Diffusion bonding is costly

High Effectiveness Low Cost (HELC) Heat Exchanger


Purpose built high pressure and high effectiveness ScCO2 power system recuperator

- Low cost high surface area inserts
- Lower overall cost load-assisted brazing process
- Better weight, material cost and volume per surface area characteristics
- Has fewer bond joints and parts
 per volume

HELC Layered Construction for Best Braze Bonding

50KWt subscale test article

EX TECHNOLOGIES CORPORATION

- Higher capacities achieved by adding more layers
- Inlets and outlets attached after furnace bonding

ITEM NO.	PART NUMBER	Revision	Description	QTY.
1	667-101	A-02	HP Frame	2
2	667-103	A-02	Plate 42	5
3	667-102	A-02	LP Frame	2
4	667-104 mockup	A-01	HP insert	2
5	667-104 mockup	A-01	HP insert	2
6	667-122	A-03	Top Inner Endplate	1
7	667-123	A-03	Bottom Endplate	1

4

HELC Configurational Advantages

Geometrical factors indicate HELC has better characteristics than PCHE for application of interest

Heat	Solidity	Area/Volume	Weight/Area	Volume/Area
Exchanger				
	(%)	(ft2/ft3)	(lbm/ft2)	(ft3/ft2)
РСНЕ	63.6	447	.697	.00223
HELC	52.6	816	.315	.00123
HELC/PCHE	.893	1.82	.453	.548

Full Scale 46 MWt HELC Module

HELC full-scale module dimensions and estimated performance

Parameter	Value		
Core length	78 inches		
Core width	32 inches		
Core height	66 inches		
Heat transfer	46.6 MWt		
Effectiveness	97.6%		
Maximum length	114 inches		
Maximum width	74 inches		
Maximum height	103 inches		
Core volume metric	.0016 M ³ /UA		
Core weight metric	6.1 Kg/UA		

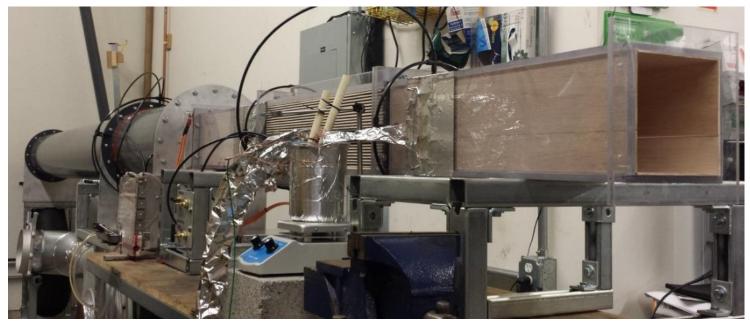
46.6 MWt Module Configuration

HELC Sub-scale Test Article Frames and Plates

50 KWt HELC frames and plates

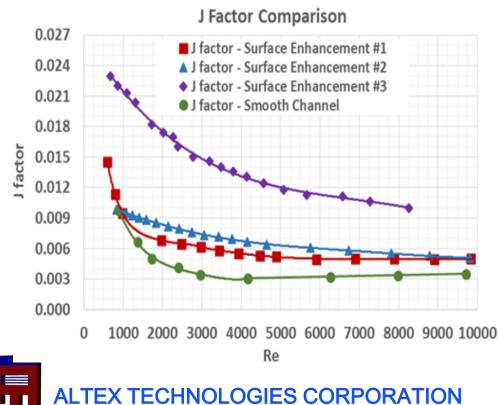
- Common parts for different capacities
- Frames provide good faying surfaces for bonding to plates
- Different inserts for enhanced performance

Braze Bonding Vacuum Furnace

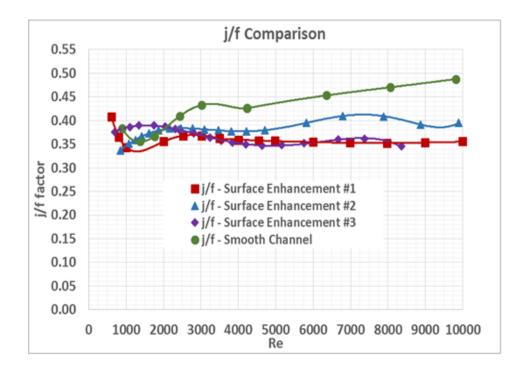

•

- Load assisted braze bonding at VPE under ISO9001 and AS9100 certification
- Stainless steel and nickelbased braze alloys
- Cleaning and quality check at Vacuum Process Engineering (VPE)
- Bonding using VPE process and furnaces
- Integrity tests at VPE and Altex

HELC Insert Heat Transfer Enhancement


Channel heat transfer and pressure drop performance test apparatus

Comparison of Smooth Channel and Surface Feature Heat Transfer Enhancements


Surface features significantly increase heat transfer coefficient

- Surface features 1, 2 and 3 have approximately 71%, 100% and 342% higher J factors than smooth channel for Re 3000
- Core volumes, weight and material cost for enhancements 1, 2 and 3 reduced by 42%, 50% and 77%, respectively

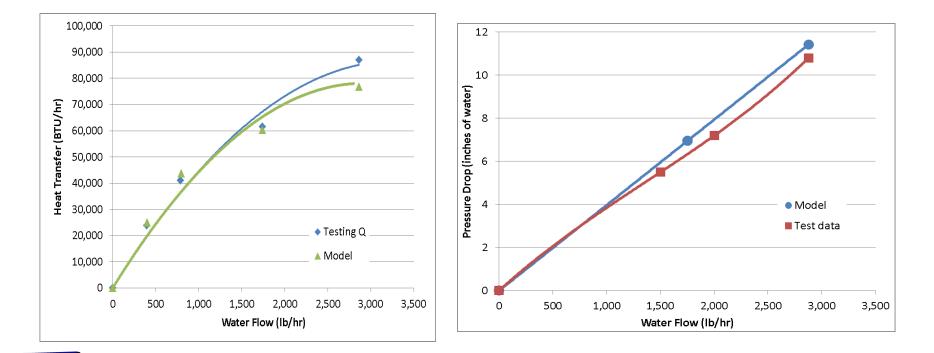
Comparison of Smooth Channel and Surface Feature Enhancements Thermal Efficiency

Surface features have good thermal efficiency

- Surface features 1, 2 and 3 have similar thermal efficiencies to smooth channels at Re 2,000
- Surface features 1, 2 and 3 have 14% lower thermal efficiencies than smooth channels at Re 4,000

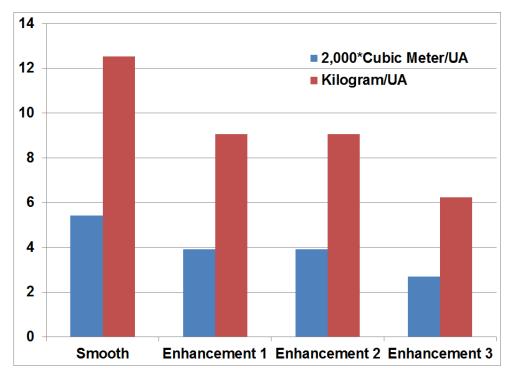
Comparison of HELC and Conventional Enhancements

Surface features are more efficient than conventional enhancements


Surface	J	J/f	Efficiency Reduction
			versus Smooth
			Channel (%)
Smooth Channel	.0033	.43	
Baseline			
Surface	.0062	.365	15.2
Enhancement 1			
Surface	.0075	.380	11.6
Enhancement 2			
Surface	.0148	.365	15.2
Enhancement 3			
Louvered Surface	.009	.225	47.7
Wavy Surface	.0105	.202	53.0

ALTEX TECHNOLOGIES CORPORATION

HELC Performance Testing


Water test and model heat transfer and pressure drop results for 50 KWt unit comparable to within 12%

ALTEX TECHNOLOGIES CORPORATION

HELC Performance Enhancement

548KWt class HELC at 95% effectiveness

- Surface enhancements reduce weight and volume metrics by 27% to 50%
- Maximum pressure drops are 8.8 to 12.5 psi
- Enhancement 1 and 2 pressure drops are 10.0 and 8.8 psi
- Reducing weight should reduce cost

Conclusions and Plans

- HELC design has potential to lower PCHE type weight, volume and material cost by 55%, 45% and 55%, respectively, based on geometrical factors
- Three surface enhancements tested show 71%, 100% and 342% higher heat transfer coefficients than those for smooth channels, with good thermal efficiency
- Water tests and model heat transfer and pressure drop results compare within 12% supporting usefulness of model
- Model results show that CM/UA and Kg/UA heat exchanger metrics can be reduced by 27% to 50% by special surface enhancements
- Plan to build and test larger unit with ScCO2

•

•

•