Exceptional service in the national interest

The SEARCH Software Suite

Code Capabilities and Experimental Comparison

The 5th International Symposium - Supercritical CO2 Power Cycles

March 28-31, 2016, San Antonio, Texas, USA

*Carlson, M. D, Bell, C., Schalansky, C., Fleming, D. F., Rochau, G.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

BACKGROUND

Supercritical CO₂ Brayton Cycle

E. J. Parma, S. A. Wright, M. E. Vernon, D. D. Fleming, G. E. Rochau, A. J. Suo-Anttila, A. Al Rashdan, and P. V. Tsvetkov, "Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept," Sandia National Laboratories, Albuquerque, NM, USA, SAND 2011-2525, May 2011.

sCO2 Brayton Cycles Recuperation

Sandia

J. Dyreby, S. Klein, G. Nellis, and D. Reindl, "Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression," *Journal of Engineering for Gas Turbines and Power*, vol. 136, no. 10, p. 101701, Jul. 2014.

Scalable SCO2 CBC Systems

J.P. Gibbs, P. Hejzlar, & M.J. Driscoll. (2006). *Applicability of Supercritical CO2 Power Conversion Systems to GEN IV Reactors* (Topical Report No. MIT-GFR-037) (p. 97). Cambridge, MA: Center for Advanced Nuclear Energy Systems MIT Department of Nuclear Science and Engineering.

Heat Exchanger Requirements

Approximate Cost Scaling

$$Cost = C_{ESDU}F_{mat}F_{p}F_{i}UA_{sp}P_{elec}$$

C_{ESDU} is the UA-specific cost value [\$/(kW/K)]

F_{mat} is a material cost factor

F_i is an adjustment for inflation

UA_{sp} is the cycle power-specific UA [kW/(K-MWe)]

 F_{p} is a pressure cost factor

 $\mathsf{P}_{\mathsf{elec}}$ is the cycle power level [MWe]

ESDU, "Selection and Costing of Heat Exchangers," Engineering Sciences Data Unit, ESDU 92013, Dec. 1994.

Heat Exchanger Development Gaps

Sandia National Laboratories

Development Gaps Addressed

Development Gaps Addressed

Key Development Metrics

Economics

- How do we optimize designs and reduce fabrication costs?
 - Efficiency vs. Effectiveness
 - Efficiency vs. pressure drop
 - Manufacturing techniques

Failure Modes

- How do we accommodate thermal stress and fatigue?
 - Pressure containment (material vs. geometry)
 - Higher Temperatures
 - Corrosion and fouling

EHX

Recuperators

Turbomachine

[1] T. Held, "Performance & cost targets for sCO2 heat exchangers," presented at the National Energy Technology Laboratory - EPRI Workshop on Heat Exchangers for Supercritical CO2 Power Cycles, San Diego, CA, USA, 15-Oct-2015.

[2] F. Pra, P. Tochon, C. Mauget, J. Fokkens, and S. Willemsen, "Promising designs of compact heat exchangers for modular HTRs using the Brayton cycle," *Nuclear Engineering and Design*, vol. 238, no. 11, pp. 3160–3173, Nov. 2008.

MCHE DESIGN ALGORITHM

The Printed Circuit Heat Exchanger

Heat Exchanger Core

Diffusion Bonding

Core and Manifold Assembly

Methods of Heat Exchanger Design

- Effectiveness NTU / LMTD Methods
 - Uses analytical solutions to various heat exchanger configurations
 - Explicit solution method with reasonable accuracy
- Compact Heat Exchanger Correlations
 - Correlations developed from experimental data for several geometries
 - Explicit accurate solution but for a limited number of correlations
- Sub-Heat Exchanger Method
 - Implements method 1 multiple times to capture property variations
 - Implicit solution needing fewer nodes / iterations than 1D solutions
- ID Channel Solutions
 - Simulates channels identically or in parallel to determine performance
 - Iterative, intensive solution with the highest accuracy and flexibility
- More complex methods also exist (2D, 3D, CFD)

Effectiveness - NTU Derivation

- Externally adiabatic
- Incompressible flow
- Constant specific heat capacity
- Enthalpy independent of pressure
- 2. Finite difference method
 - Establish control volumes
- 3. Coupled differential equations
 - Hot and cold-side temperatures
- 4. General solution
 - Relate temperatures, UA, C's
- 5. Effectiveness-NTU formulation

$$NTU = \frac{UA}{\dot{c}_{min}}$$
, and $\dot{C}_R = \frac{\dot{C}_{min}}{\dot{c}_{max}}$

•
$$\varepsilon = q / [\dot{C}_{min}(T_{H,in} - T_{C,in})]$$

G. Nellis and S. A. Klein, Heat Transfer. Cambridge; New York: Cambridge University Press, 2009.

Effectiveness - NTU Solution

G. Nellis and S. A. Klein, Heat Transfer. Cambridge; New York: Cambridge University Press, 2009.

Sub-Heat Exchanger Method

$$\dot{C}_i = \dot{m} \frac{h_i - h_{i+1}}{MAX(1e-4 [K], |T_i - T_{i+1}| SIGN(h_i - h_{i+1}))}$$

$$\varepsilon_i = \frac{\dot{q}_i}{\mathsf{MIN}(\dot{C}_{A,i}, \dot{C}_{B,i})(T_{A,i} - T_{B,i+1})}$$

$$NTU_{i} = \begin{cases} \frac{\ln\left[\frac{(1 - \varepsilon C_{R})}{1 - \varepsilon}\right]}{1 - C_{R}} & \text{for } C_{R} < 1\\ \frac{\varepsilon}{1 - \varepsilon} & \text{for } C_{R} = 1 \end{cases}$$

$$UA_i = NTU_i \operatorname{MIN}(\dot{C}_{A,i}, \dot{C}_{B,i})$$

- Divide into a series of HXers
- Extends e-NTU method
- Assumptions apply to each sub-heat exchanger (Δx)
- Best method to obtain UA accurately and quickly with variable property flows

G. Nellis and S. A. Klein, Heat Transfer. Cambridge; New York: Cambridge University Press, 2009.

ASME BPVC Design Equations

M. Carlson, T. Conboy, D. Fleming, and J. Pasch, "Scaling Considerations for SCO2 Cycle Heat Exchangers," in *Proceedings of the* ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 2014, pp. 1–5.

Non-Dimensionalized Equations

M. Carlson, T. Conboy, D. Fleming, and J. Pasch, "Scaling Considerations for SCO2 Cycle Heat Exchangers," in *Proceedings of the* ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Düsseldorf, Germany, 2014, pp. 1–5.

PCHE Core Pressure Containment

M. Carlson, T. Conboy, D. Fleming, and J. Pasch, "Scaling Considerations for SCO2 Cycle Heat Exchangers," in *Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition*, Düsseldorf, Germany, 2014, pp. 1–5.

PCHE Core Pressure Containment

Carlson, M. (2012). *Measurement and Analysis of the Thermal and Hydraulic Performance of Several Printed Circuit Heat Exchanger Channel Geometries* (Master of Science). University of Wisconsin - Madison, Madison, WI.

Sandia

Half-Cylindrical Headers

Thermal-Hydraulics

- 1. Sub-heat exchanger length
- 2. Sub-heat exchanger conductance-area product
- 3. Convective thermal resistances
- 4. Conductive thermal resistance
- 5. Fouling thermal resistances

PCHE Design Software

Document Number: RC1				Revision Number	: 1			Hea	t Exchar	nger Data Sheet
	Side A (straight)		Sid	le B (Z-side)	solution	solutionScope\$= All design steps (mech, thermo, TH)				
	Step 1. Side A and B Stream Com			npositions (by mass %)		Calculate]	Save Inputs		Load Inputs
Choose the fluid set:	: Refprop Fluid(s)		Refp	Refprop Fluid(s)				Summary o	f PCHE	Design
First 8 fluid components:	100 [%]	WATER.FLD	100	(%) R1233ZD.FLD		Job Nur	nber	RC1		
	0 [%]	ACETONE.FLD	0 [%	1BUTENE.FLD		Run	Date	*******		
	0 [%]	Nitrogen.fld	0 [%	1BUTENE.FLD		Job	Title	Test		
	0 [%]	co2.fld	0 [%	1BUTENE.FLD		Code l	Jsed	ASME Code Sec	ion VIII Div	teion 1 - 2013
	0 [%]	Propane.FLD	0 [%	1BUTENE.FLD	Core Le	ngth (bet. head	ers)	L = [m]		
	0 [%]	BUTANE.FLD	0 [%	1BUTENE.FLD	Core V	Vidth (bet. head	ers)	w = [m]		
	0 [%]	IPENTANE.FLD	0 [%	1BUTENE.FLD	Care Ca	Core He	eight - wo	H = '''' [m]	4	
	0 1%1	HEXANE.FLD		1BUTENE ELD	Core Ch	Side A Surface /	k wyj	Ac - [m	1 2 ₁	
						ide B Surface /	Area	Ase = 1111 [m	21	
Fouling (val A, val B)	CO2 vap	por	00	2 vapor	Wetted Vo	olume (core + h	drs)	Voluet = T	' [m ³]	
Fouling Factor:	R",,, =0	.0001 [m ²⁻	R" _f	₈ = <mark>0.0001</mark> (m ²⁻	Metal	Mass (core + h	drs)	M = ' *** [kg]	• •	
,	:	Step 2. Specify Fluid	Flow Rates	i	Heat 1	ransfer Rate (D	uty)	ģ = [V	V]	
Flow Rate (mass A, mass B)	1	m₄ = 80.4 [ka/s]		n= =34.9 [ka/s]	Conduc	tance-Area Pro	duct	UAsum = 1111	" [W/K]	
	,	(, = ' [m ³ /s]	,	/_ = ' [m ³ /s]		Side A M/	AWP	MAWP _A = ""	[Pa]
Inite States (T. D. T. D.	- ·	vA - [m//s]		vB - [m/s]		Side B M/	AWP	MAWP _B = ^{***}	[Pa]
Iniet States (TA, PA, TB, PB)		Step 3. Specify Inlet	State for Si	des A and B	MAV	/T (same as MD	MT)	MAWT = "	[K]	
Inlet Pre	ssure 1	P _A = <u>7.170E+06</u> [Pa]		P _B = 2.330E+07 [Pa]	Number of	FEtched Plate P	airs	N _{rows} = ** [-]		
Inlet Temper	rature	A,in = 5/2.8 [K]		B,in = 378.1 [K]	Side A	Channels per F	Plate	N _{ohip,A} = * [-		
Inlet Quality (±100 = sup o	rsub) (Q _{A,in} = **	(Q _{B,in} = "	Side B	Channels per H	late	N _{ohip,B} = *[-	1	
Outlet Pre	ssure I	P _{A,out} = ·······[Pa]		P _{B,out} = ·······[Pa]	Number	or on-elched Pi	ates	Mex -		
Outlet Temper	rature	A,out =[K]		B,out = 004.2 [K]			Ste	p 9. Other Co	ntrois	
Outlet Quality (±100 = sup o	rsub) (uA,out =		HB,out =	Max Active core	volume width	WAC	v,max = 0.1597	[m]	
_	-	Step 4. Specify the	Allowable Pr	ressure Drop	Max Active core	volume height	HAC	_{V,max} = 2.5 [m]		
Pressure	Drop (dPsum _A = ····· [Pa]		dPsum _B = ····· [Pa]	Extra v	vidth provided	Wext	tra = 0 [m]		
Drop / Operating Pre	ssure (ur _{A,%} =[%]		ure,% = [70]	Extra h	eight provided	Hext	_{ra} = 0 [m]		
		Step 5. Specify Header Orientations			Step 6. Speci	fy the	Performanc	e Meas	ure	
Header Axis Orien	tation	Vertical	V	ertical	Choose I	Measure Type	Sid	e B Outlet Tem	perature	
	:	Step 7. Specify Core	Channel G	eometry	Diffusion Bonding J	loint Efficiency	EDR	=0.7 [-]		
Channel	Width	w _A = 0.001289 [m]	·	w _B = 0.001289 [m]	Header Cylinder J	oint Efficiency	Emi	=0.7 [-]		
Channel	Depth (d, = 0.000763 [m]		d _e = 0.000763 [m]						

- Sub-hxer model
- ASME BPVC
- Single, two-phase

supercritical flows

• Over 400 fluids

PROTOTYPE PCHE DESIGN

Heat Exchanger Data Sheet

Sandia National Laboratories

Design for Multiple Phases

- 1. Pressure Containment
 - Evaluated by hydrostatic pressure testing
- 2. Single-phase Thermal Hydraulics
 - Evaluated in the NESL water test loop
- 3. Supercritical Thermal Hydraulics
 - Evaluated in the NESL sCO2 loop
- 4. Fatigue Lifetime (to failure)
 - Tested by thermal cycling under pressure

Instrumentation

Instrumentation – Tap Locations

HEAT EXCHANGER TEST PLATFORM

Test Platform Configuration

PCHE Instrumentation

PCHE PERFORMANCE COMPARISON

Performance Testing

SEARCH appears conservative by at least 10% on q, UA, effectiveness

Performance Comparison

Time Range	Description
0-750	Baseline, prepare to start test. Hot flow started first, wait to reach steady state.
750-1500	Start cooling flow; keep at maximum rate until loop below 70°F.
1500-6500	Increased heater power gradually (5-10% increments) to $100\% = 110^{\circ}$ F.
6500-7000	Shut off heater power, cooling remains on.

	ġ/W		UA /	(W/K)	3		
Time / s	SEARCH	Measured	SEARCH	Measured	SEARCH	Measured	
4200	44000	+7%	8100	+13%	43%	+6%	
4700	44000	+12%	8200	+23%	43%	+11%	
5100	54000	+13%	8400	+26%	43%	+12%	
5400	61000	+14%	8500	+28%	44%	+13%	
5700	67000	+14%	8600	+27%	44%	+13%	
6260	67000	+16%	8700	+32%	44%	+15%	

Calculated vs. Meas. Pressure Drop

Pressure Drop Prediction Capability <a>D

Sandia

Nationa

Conclusions

- Based on our first set of tests:
 - SEARCH is within 25% accuracy on key metrics
 - Thermal performance is predicted conservatively
 - Pressure drop is under-predicted in some regimes
- These results have already been applied
- Testing is planned after loop upgrades
 - Additional thermal-hydraulic observations
 - Intermediate state (T & P) profiles
 - Future test phases (sCO2, fatigue)

BACKUP SLIDES

The Argument for SCO2 Brayton

Versus Helium and Steam

- 1. Higher efficiency
 - Sodium Fast Reactor operating at 550 °C
 - Concentrated Solar
 Power up to 700 °C
 - CCS Gasified Coal and Natural Gas up to 1150 °C
- 2. Compact turbomachinery
 - Smaller system footprint
 - Possibly reduced cost

Dominated by fossil

Current Electrical Generation

Nuclear is a critical part

Electrical Generation

- Expected that natural gas and nuclear will grow; coal will shrink
- Two main technologies
 - Steam Rankine cycle
 - Coal, Nuclear, CCNG
 - Gas Brayton cycle
 - Natural gas

U.S. 2013 Electricity Generation By Type

Supercritical CO₂ (sCO₂) Brayton Cycle

- Key Advantages over Steam
 - Smaller turbomachinery
 - Single-phase fluid (no quality issues)
 - Recuperation becomes practical

20 meter Steam Turbine (300 MWe) (Rankine Cycle)

1 meter sCO₂ (300 MWe) (Brayton Cycle)

Key Advantages over Gas

- High efficiency at low temperatures
- Lower compression work
- Smaller turbomachinery

Official Use Only

Current SCO2 CBC HXers

G. O. Musgrove, C. Pittaway, D. Shiferaw, and S. Sullivan, "Tutorial: Heat Exchangers for Supercritical CO2 Power Cycle Applications," San Antonio, Texas, USA, 03-Jun-2013.

Commercial Unit Potential

Key Requirements:

- ✓ High Pressure
- ✓ High Temperature
- ✓ Corrosion Resistant
 - ✓ High Reliability
- ✓ Compact Geometry
- ✓ Scalable to 150 MWe

$$\beta = \frac{A_s}{V} = \frac{4\phi}{d_h}$$

Plate-Fin 200 to 800 [m²/m³]

Coil-Wound 10 to 300 [m²/m³]

Shell and Tube 10 to 200 [m²/m³]

Printed Circuit 200 to 5000 [m²/m³]

Shell and Plate 100 to 600 [m²/m³]

PCHE Thermal-Hydraulic Performance

Carlson, M. (2012). *Measurement and Analysis of the Thermal and Hydraulic Performance of Several Printed Circuit Heat Exchanger Channel Geometries* (Master of Science). University of Wisconsin - Madison, Madison, WI.

HEAT EXCHANGER COMPACTNESS

Surface Area Density:
$$\beta = \frac{A_s}{V} = \frac{4\phi}{d_h}$$

Potential Applications

Coal / Nuclear

Steam Rankine

MARINE Rolls-Royce WR-21 Type 45 Destroyer

VEHICULAR Honeywell AGT1500 M1 Abrams Tank

GenIV Nuclear Sodium Fast Reactor

Refrigeration Commercial, Cryogenic

Solar Turbines Mercury 50

Effectiveness and Scaling Behavior

Fundamental Scaling Behavior

Sandia

Overall Heat Transfer Coefficient

Fundamental Scaling Behavior

 $\dot{q} = UA\Delta T$

Eluid	Transmission Outras	El stat	Overall Heat Transmission Coefficient			
Fiuld	Iransmission Surface	Fluid	(Btu/ft ² hr °F)	(W/m ² K)		
Water	Cast Iron	Air or Gas	1.4	7.9		
Water	Mild Steel	Air or Gas	2.0	11.3		
Water	Copper	Air or Gas	2.3	13.1		
Water	Cast Iron	Water	40 - 50	230 - 280		
Water	Mild Steel	Water	60 - 70	340 - 400		
Water	Copper	Water	60 - 80	340 - 455		
Air	Cast Iron	Air	1.0	5.7		
Air	Mild Steel	Air	1.4	7.9		
Steam	Cast Iron	Air	2.0	11.3		
Steam	Mild Steel	Air	2.5	14.2		
Steam	Copper	Air	3.0	17		
Steam	Cast Iron	Water	160	910		
Steam	Mild Steel	Water	185	1050		
Steam	Copper	Water	205	1160		
Steam	Stainless Steel	Water	120	680		

Effectiveness and Scaling Behavior

Other Useful e-NTU Scaling

- Configuration matters most for C_R = 1; counter-flow is best
- Effectiveness is asymptotic with NTU (size); 1 for counter-flow
- Configuration matters less as C_R approaches 0

Pressure Drop Correlations

$$\Delta P = \sum \Delta P_{friction} + \sum \Delta P_{local} + \sum \Delta P_{acceleration} + \sum \Delta P_{body forces}$$

Body Forces

 $\Delta P_{gravity} = g\left(\frac{i_{out}\rho_{out} + i_{in}\rho_{in}}{i_{out} + i_{in}}\right) Lsin(\theta)$

Local Form Losses

$$\frac{\Delta P_{local}}{G^2/2\rho} = K_{loss} = f\left(\frac{L_{equivalent}}{d_{hyd}}\right)$$

Acceleration Difference

$$\Delta P_{acceleration} = G^2 \left(\frac{1}{\rho_{out}} - \frac{1}{\rho_{in}} \right)$$

Colebrook Equation

$$\frac{1}{\sqrt{f}} = -2\log_{10}\left(\frac{RR}{3.7} + \frac{2.51}{Re\sqrt{f}}\right)$$

$$f = 0.316Re^{-0.25}$$
 $f = 0.188Re^{-0.22}$

Kondraťev

Blasius

$$f = \frac{1}{\left(1.8\log_{10}\left[\left(\frac{RR}{3.7}\right)^{1.11} + \frac{6.9}{Re}\right]\right)^2} \quad \Longrightarrow \quad f = \frac{1}{(1.82\log_{10}Re_b - 1.64)^2}$$

 $\Delta P_{friction} = f \frac{L_s}{d_{hvd}} \frac{1}{2} \frac{G^2}{\rho}$

Heat Transfer Correlations

