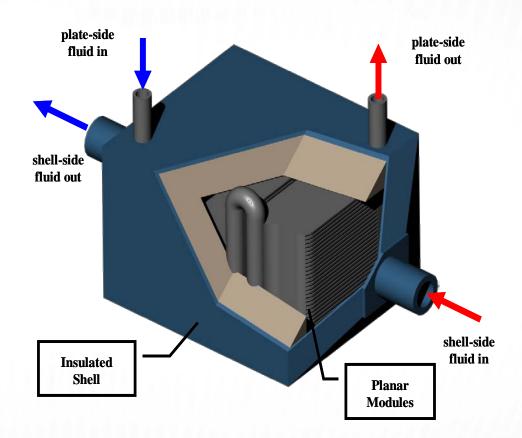
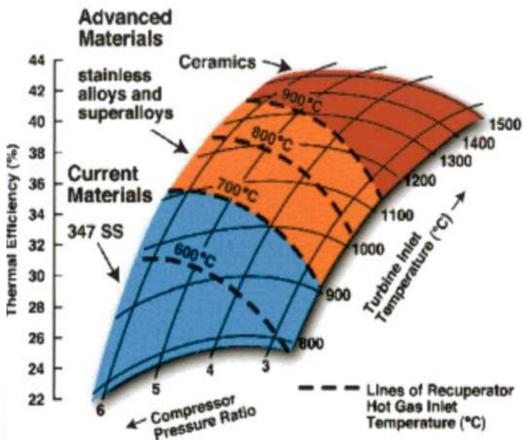
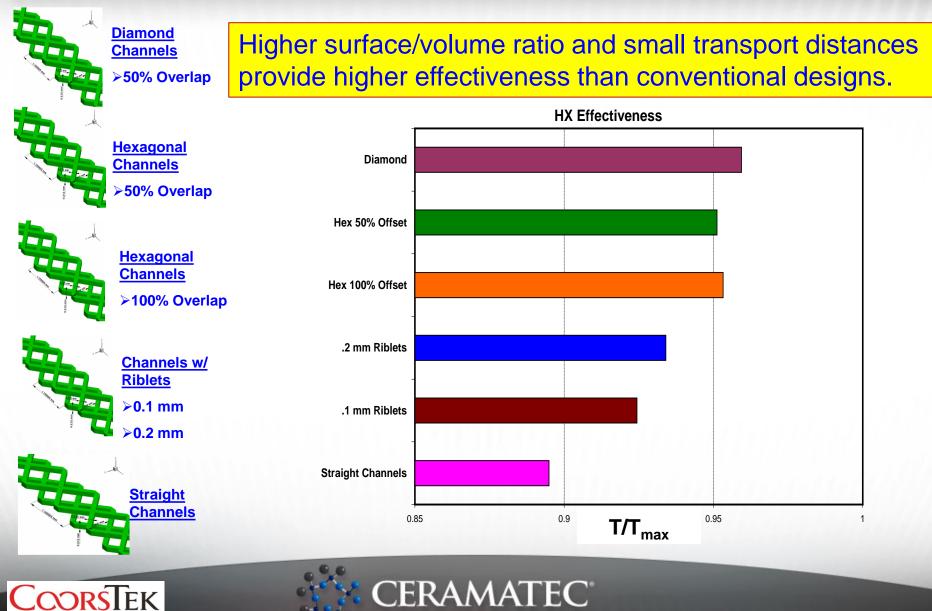

Ceramic, Microchannel Heat Exchangers for Supercritical Carbon Dioxide Power Cycles

C. Lewinsohn and J. Fellows - Ceramatec, Inc.

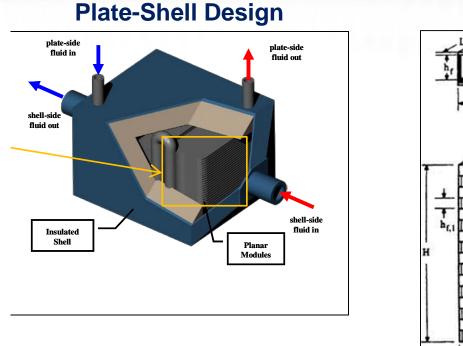

N. Sullivan, R.J. Kee, and R. Braun – The Colorado School of Mines

Introduction & Overview


- Benefits
- Design
- Fabrication
- Testing
- Summary


Benefits of Ceramic Heat Exchangers

- Allow higher operating temperatures.
 - Higher efficiency
 - Reduced
 emissions
- Corrosion resistant
- Low cost


Compact Heat Exchanger Benefits

OMORROW'S CERAMIC SYSTEMS

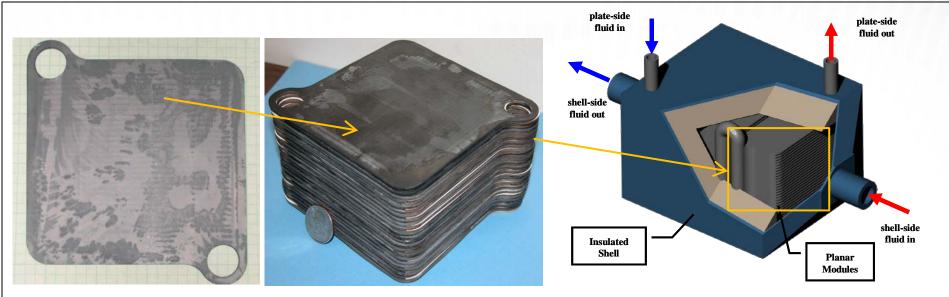
Amazing Solution

Scaling Microchannel Designs

Block Design

• Design options:

PCHE, FPHE, etc.


- Plate-shell: microchannel plate/macrochannel shell
- "Block" design

Ceramatec Approach

Plate-Shell Design

Individual plates as repeat units in modular stacks

reduce net cost:

- Downstream yield of full component
- Simpler layup
- Simpler binder removal
- Simpler manifolds

Laminated Object Manufacturing

1 Powder 2 Slip Tape processing preparation fabrication

- 1 Control surface area for slip properties and sintering.
- **2** Disperse materials for uniform tape properties (featuring and lamination), defect elimination and controlled sintering shrinkage.
- 3 Dry tape uniformly for uniform thickness, minimal drying stress, without defects.

Laminated Object Manufacturing

4 Tape Tape featuring lamination

4 – Optimise power and speed to minimise heat affected zone, maximize throughput, and obtain accurate channel dimensions.

4 – Laser cut or punch depending on layer thickness and channel dimensions.

5 – Complete lamination for structural integrity without deforming internal features.

Laminated Object Manufacturing

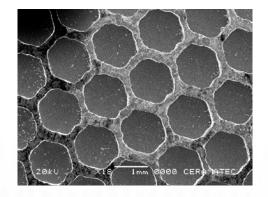
6 Sintering

Stack Assembly

6 – Controlled thermal cycle/environment for binder burnout and densification to make leak tight components while maintaining flatness without creating defects.

6 – Complex designs require co-sintering dissimilar materials and porous and dense layers in the same component.

7 – Requires robust ceramic-ceramic joining.


Microchannel Heat Exchanger Design Flexibility

Microchannel Heat Exchangers Performance Metrics

Performance Metric	Value
Thermal Duty	1 MW (heat)
Hydraulic Diameter - Feed	636µ
Hydraulic Diameter - Exhaust	1684µ
Temperature Span (Inlet to Inlet)	450C to 950C
Volume	1.0 m^3
Log Mean Delta Temperature	25C
Overall Heat Transfer Coefficient	$145 \text{ W/m}^2\text{C}$
Area Density (modular stack)	$310 \text{ m}^2/\text{m}^3$

• Scaleable from kW to MW

Calculated values

- Estimated ceramic heat exchanger cost: \$100-200 kW_{th}
- Reference case: gas separation modules: 100 \$/kW (independently verified by 3rd party for DOE).

ALIGNING Solution

Microchannel Size Selection

Effectiveness

Earth • Energy • Environment

- Once again, channel width does not have a significant effect
- Effectiveness is better with lower Re
- Also lower with larger channel height
- Considering the plot of pressure drop, one might conclude that Re = 600, height = 0.6 mm provides optimal results
 - Effectiveness > 80%
 - Delta P < 20 kPa
- Re = 400 might also work, but this brings about some concern over total heat transfer and total mass flow rate

Colorado School of Mines

95 0.4 mm Re = 400-+-h = 0.6 mm Rc = 400 0.4 mm Re = 600 -h = 0.8 mm re 0.4 mm Re = 800-h = 0.6 mm Re = 800 +h = 0.8 mm Re = 800 Heat Exchanger Effectiveness (%) 70 0.40.6 0.81.2 1.4 1.6 1.8 2 2.2 Channel Width (mm)

Plate Design

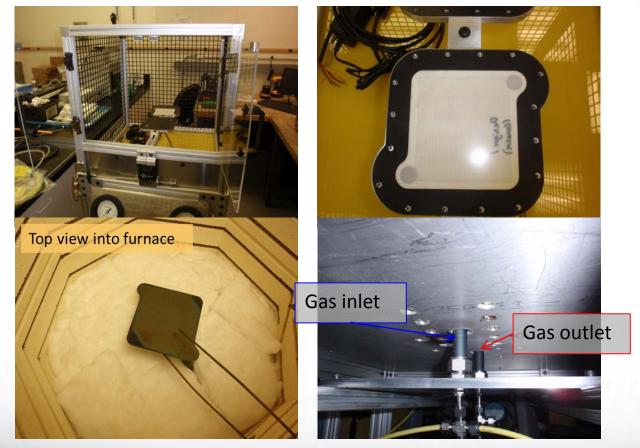
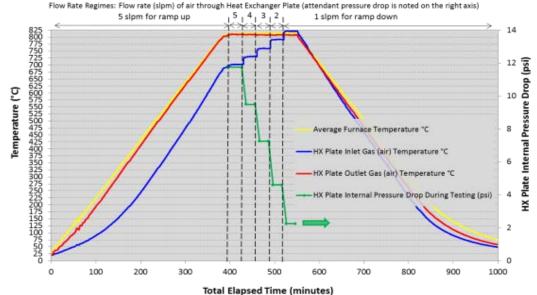

- Plate Shell design
- Flow distribution to channels
- Flow distribution across plates

Plate Fabrication and Testing

Individual Plates

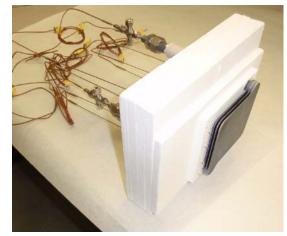


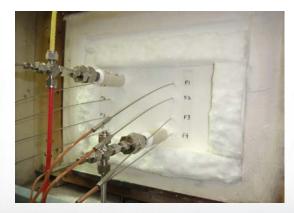
Microchannel Heat Exchanger Test Results

Individual Plates

Preliminary results:

- High pressure drop
- Approach temperature > 100C for >5 slpm
- Plate to be cross sectioned and characterised
- Additional plates to be tested





Microchannel Heat Exchanger Test Apparatus

3-10 plate stacks



Microchannel Heat Exchanger Test Apparatus

3-10 plate stacks

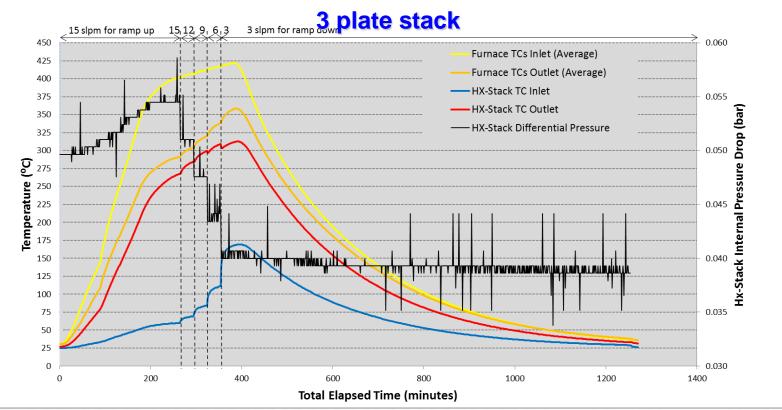
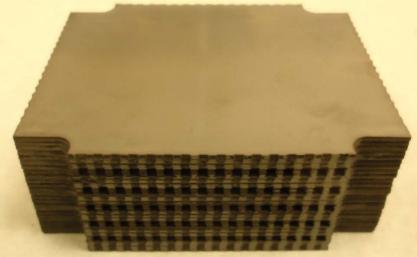
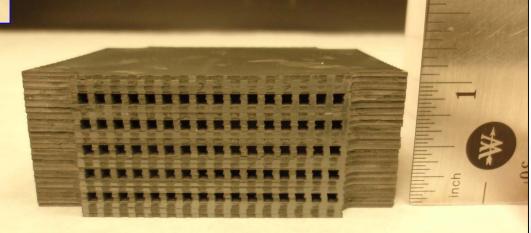

Measurements

Plate Temp in Plate Temp Out Channel Temp in Channel Temp Out Channel Pressure In Channel Pressure Out

Microchannel Heat Exchanger Test Results



Preliminary results indicate good performance: low approach temperature – 60C Reasonable pressure drop – 3900 kPa



Status: UTRC Crosscutting Technology Award

Block Design

20-30 individual tape layers. Featured, laminated, and sintered as one unit. Successfully fabricated on second attempt. R&D cost.

Future Work

Support mitigation of key technical risks, especially lifetime:

Continue study and validation of design tradeoffs between design for manufacturing and performance. Materials testing: Oregon State U., U. Wisconsin. Assembly of 5-10 kW stacks and n * 1000 h testing. Verify reliability of integration with balance of plant, especially hot gas manifolds. Verification of viable manufacturing costs for robust and scalable processes.

Summary

- Ceramic microchannel heat exchangers offer improved efficiency for high temperature processes and potentially lower costs for fabrication of compact heat exchangers.
- Results obtained by Ceramatec and UTRC during Crosscutting Technology research show promising results and identify remaining challenges.
- A plan to mitigate risks and commercialize products, supported by CoorsTek, has been developed.

Thank you. Questions?

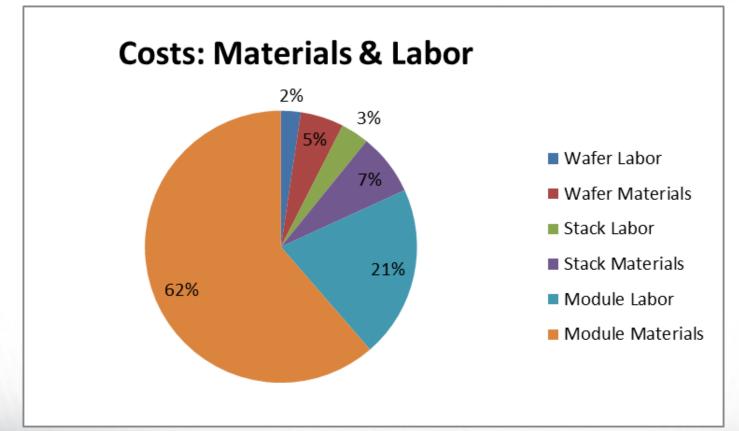
Acknowledgement: DOE Office of Fossil Energy, Office of Crosscutting Technology, DE-FE-0024077.

SiC Heat Exchanger:

Economics Basis

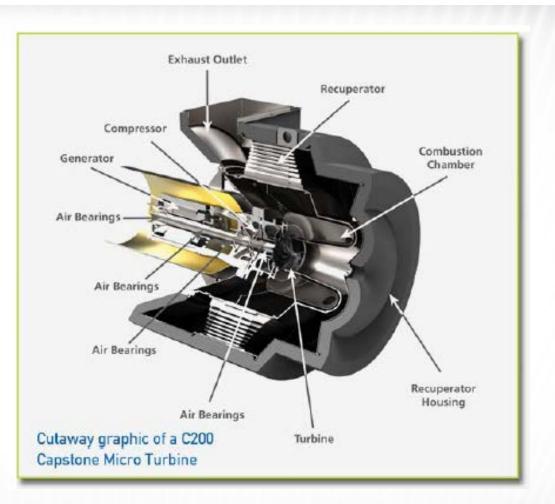
- Production
 - 26 kWe μ-turbine cycle
 - "Optimized Design"
 - 10,000 units/year

- Cost Model CKGP / Ceramatec
 - Extension / Modifications
 - Capitalization (new plant)
 Process Consists
 - Process Capacity


- Fixed / Variable Costs
 - Labor (DL & IL)
 - Efficiency / Rates
 - Materials
 - SiC (435 Tonne/yr)
 Consumption

Item		T
	Description	Amount
Direct Labor	Labor for value added fabrication processes (80 man years)	\$2,093,077
Indirect Labor	Labor for management and QC in fabrication (68 man years)	\$4,127,548
Benefits	For both direct and indirect labor (30% of labor)	\$1,866,188
Overhead	Facilities, maintenance and utilities (20% of labor)	\$1,617,363
Sub-total	Labor related variable costs	\$9,704,176
Direct Materials	Material expenses directly used in product (SiC powder)	\$5,216,013
Consumables	Materials used to produce product (mylar, solvents etc)	\$3,662,557
Heat exchanger package	Finishing, packaging, insulating heat exchanger (\$500 each)	\$5,000,000
Sub-total	Materials related fixed costs	\$13,878,570
Capital Depreciation	10 year straight-line (equipment, facilities)	\$10,879,826
Sub-total	Annual expenses	\$34,462,572
Management	Corporate G&A (20% of expenses)	\$6,892,514
Sub-total	Cost of production	41,355,086
Profit	15% of production costs	\$6,203,263
Total	Revenue	\$47,558,349
Number of Units	10,000 per year	
Price per Unit	Total/Number of Units (26 kWe Micro-turbine)	\$4,755.83
Price per kWe	26 kW electric micro-turbine cycle	\$183
Price per kWh	107 kW heat recuperation	\$44

Cost Breakdown


1-200 kW_{th}/unit 1,000 units/yr

Application: microturbines

- Recuperator Inlet Temp:
 - Metal 600C
 - Ceramic 800C
- Turbine inlet temperature:
 - Metal 900C
 - Ceramic 1100C
- Efficiency
 - Non-recuperated: 20%
 - Metal, Recuperated: 50%
 - Ceramic, Recuperated: 60%
- Fuel savings:
 - \$
 - kg
 - emissions

System Modeling & Design Colorado School of Mines

Summary of recuperator design requirements derived from system modeling effort

Colorado School of Mines

Earth • Energy • Environment

C30 Turbine Model and Net Power (kW) C65 C200 7.5 Pressure Drop (kPa) 10 7.5 1.348 Air Side Mass Flow Rate (kg/s) 0.2991 0.498 Exhaust Side Mass Flow Rate (kg/s) 1.36 0.3051 0.5027 149.4 168.1 190.6 Air Inlet (SP 2) Temp (C) Air Outlet (SP 3) Temp (C) 571.6 594.7 589.4 Exhaust Inlet (SP 5) Temp (C) 694.4 690.6 666.7 Exhaust Outlet (SP 6)Temp (C) 275.3 309.3 280.7 Recuperator Heat Transfer (kW) 140.9 215.2 585.8 Recuperator Effectiveness 0.799 0.7632 0.8427

Supering Southouse

Microchannel Size

Single Micro-Channel Fluent Study

Earth • Energy • Environment

- Investigating effects of varying channel dimensions of a single channel on pressure drop, effectiveness ,etc.
- Channel width 0.6-2 mm
- Channel height 0.4 0.8 mm
- Rib width 0.4 mm
- "External" fluid gap height 0.4 1 mm
- Length of 150 mm (full length)
- Boundary conditions
 - Channel mass flowrate set based on Re 400, 600, 800 _
 - External mass flowrate set proportional to channel flow rate, based on proportion from EES system model (difference due to fuel addition)
 - T ch in = 463 K, T ext in = 939 K (from EES 200 kW turbine system model)
 - P out = 0 Pa gauge

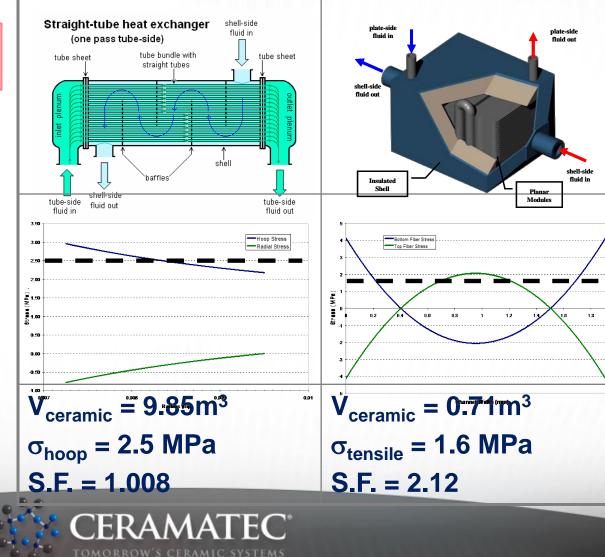
Colorado School of Mines

Ceramic Layer "External" Channe fluid

SolidWorks drawing representing the single channel geometry.

27

Component Scale-up


Compact vs Conventional Design

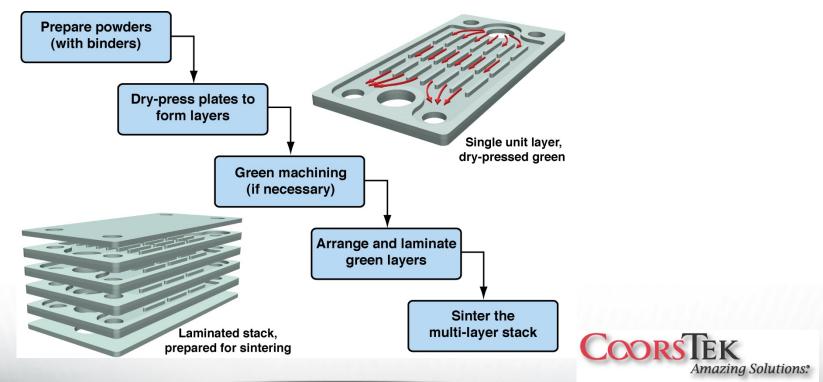
Tubular Designs

Reliability

$$P_f = 1 - \exp\left(-\frac{1}{\sigma_0^m}\right) \iiint_V \sigma(x, y, z)^m dV$$

Where: $\sigma(x,y,z) = \sigma(P) + \sigma(\Delta T)$ $\sigma_0 = Weibull Material Scale Parameter$ m = Weibull Modulus

Planar Designs


Stress

1000 µm

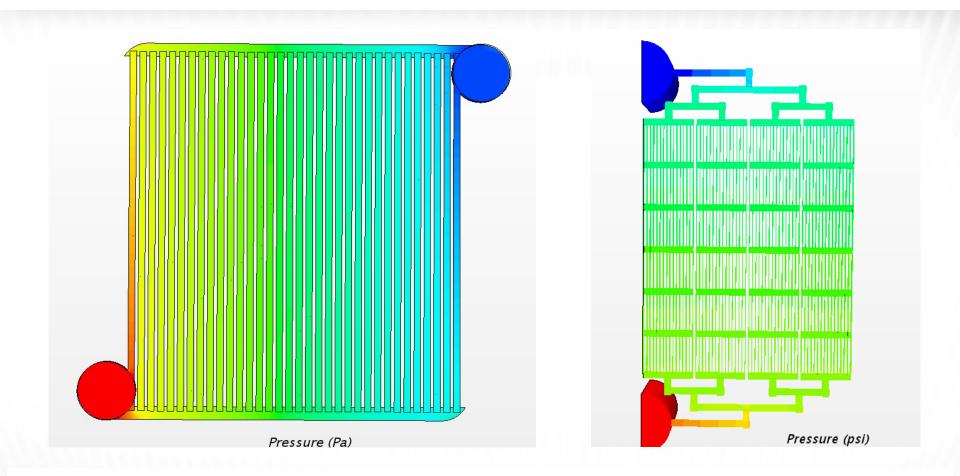
Metrics

Microchannel Heat Exchanger Fabrication

 Pressure Laminated Integrated Structure Manufacturing (PLIS)

supering Solutions

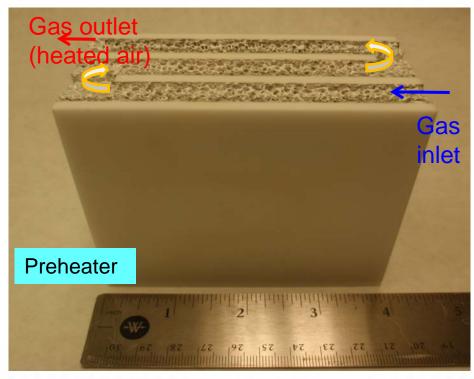
Plate Design



- Plate Shell design
- Flow distribution to channels
- Flow distribution across plates

Plate Design

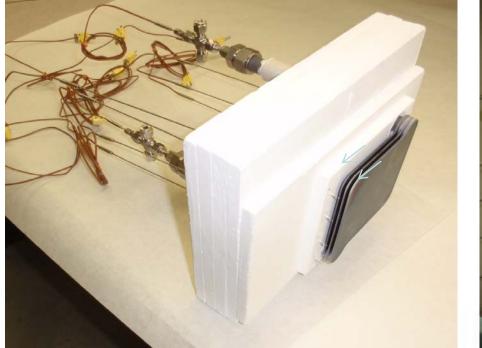
- Revision to manifold to improve flow distribution
- Final revision in process.



Microchannel Heat Exchanger Test Apparatus

3-10 plate stacks

Preheater and Test chamber are placed inside furnace



Test chamber

Microchannel Heat Exchanger Test Apparatus

3-10 plate stacks

Heat exchanger stack inserted into test chamber to make flow duct for plateside gas. Microchannel gas flows into and out of manifolds.

