Effects of thermal boundary condition on turbulent statistics in flows with a supercritical fluid

Hassan Nemati, Ashish Patel, Bendiks Jan Boersma, Rene Pecnik

Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands

Motivation

Several numerical studies on heat transfer to supercritical fluids

- Effect of buoyancy, heat flux/mass flux ratio, etc.
- Yoo, Annual Review Fluid Mechanics, 2013

Most of the numerical studies assume isoflux boundary conditions

- Isoflux BC allows temperature fluctuations at the wall
- Isothermal BC does not allow temperature to fluctuate at the wall

If fluid's Prandtl number > 1, temperature fluctuations do not affect heat transfer (Kasagi, 1989; Li et al., 2009).

Does this also hold for flows with strong property gradients even if Pr > 1?

Effect of fluid/wall properties on temperature fluctuations

Challenge the future 3

Effect of Prandtl number

• Ratio of Nusselt number for isoflux to isothermal boundary conditions

Sleicher, 1955; Kasagi et al., 1989

Thermal effusivity ratio and Prandtl number examples

Prandtl number	Air * 0.708	Water * 6.78	scCO ₂ (80bar) up to 14
Aluminum	0.00025	0.071	
Nickel based alloy	0.00073	0.207	~0.25
Copper	0.00015	0.044	
Glass	0.00419	1.190	
Plexiglas	0.00942	2.680	

* based on Kasagi et al., Journal of heat transfer, 1989

Investigate influence of thermal effusivity ratio on heat transfer to scCO₂

- Allow wall temperature fluctuations: $K = \infty$
- Do not allow temperature fluctuations: K = 0

Simulation setup

This setup ensures the same thermodynamic condition at the wall!

Challenge the future 6

Simulation setup

7

Properties of supercritical fluids

TUDelft

Challenge the future 8

Governing equations

Low-Mach number approximation of Navier-Stokes equations:

$$\begin{aligned} \frac{\partial \rho}{\partial t} &+ \frac{\partial \rho u_i}{\partial x_i} = 0 \\ \frac{\partial \rho u_i}{\partial t} &+ \frac{\partial \rho u_i u_j}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re_{\tau 0}} \frac{\partial \tau_{ij}}{\partial x_j} \\ \frac{\partial \rho h}{\partial t} &+ \frac{\partial \rho u_i h}{\partial x_i} = -\frac{1}{Re_{\tau 0}Pr_0} \frac{\partial q_i}{\partial x_i} \end{aligned} \qquad \tau_{ij} = \mu S_{ij} = \mu (\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}) \\ q_i = -\lambda \frac{\partial T}{\partial x_i} = -\frac{\lambda}{c_p} \frac{\partial h}{\partial x_i} = -\alpha \frac{\partial h}{\partial x_i} \end{aligned}$$

with:

$$Re_{\tau 0} = \frac{\rho_0^* u_{\tau 0}^* D^*}{\mu_0^*} = 360 \qquad Pr_0 = \frac{\mu_0^* c_{p0}^*}{\lambda_0^*} = 3.2 \qquad Q = \frac{q_w^* D^*}{\lambda_0^* T_0^*} = Re_{\tau 0} Prq = 2.4$$

Numerical scheme

- **Spatial discretization**: 2nd order central difference on staggered mesh
- **Temporal discretization**: 2nd Adams-Bashforth and Adams-Moulton
- Koren limiter for advection part of energy equation
- Diffusion part in circumferential direction treated implicitly
- Mesh resolution:
 - Mesh points 128 x 288 x 1728
 - Radial 0.55 (*wall*) $< \Delta r^+ < 4.3$ (*center*)
 - Circumferential $R\Delta\theta^+ = 3.93$
 - Axial $\Delta z^+ = 6.25$
- Thermophysical properties (CO2 at P=8 Mpa) are interpolated from table

Instantaneous flow field, isoflux simulation

Instantaneous enthalpy fluctuations

= 4.7 (based on inlet condition)

Challenge the future 13

Radial heat fluxes

Total radial heat flux:

$$q_{r,tot} = \overline{\alpha} \frac{\partial \overline{h}}{\partial r} + \overline{\alpha' \frac{\partial h'}{\partial r}} - \overline{\rho u_r'' h''}$$

x/D = 15

Nusselt number ratio

Nusselt number: $Nu = \frac{\overline{\alpha \frac{\partial h}{\partial r}}|_w}{\lambda_b (T_w - T_b)}$

Turbulent kinetic energy and Reynold shear stress

Decomposed skin friction, FIK identity

(Fukagata, Iwamoto, Kasagi; PoF 2002)

$$C_{f,FIK} = \underbrace{-\frac{2}{\rho_b U_b^2 R e_{\tau 0}} \int_0^R r \overline{\mu} \overline{S}_{rz} r dr}_{0} + \underbrace{\frac{2}{\rho_b U_b^2} \int_0^R r \overline{\rho} u_r'' u_z'' r dr}_{0} \underbrace{\frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \overline{p} \overline{\mu}}{\partial z} r dr}_{0} + \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \overline{p} \overline{\mu}}{\partial z} r dr + \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \overline{\mu}}{\partial z} r dr + \frac{1}{\rho_b U_b^2} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \overline{\mu}}{\partial z} r dr - \frac{1}{\rho_b U_b^2 R e_{\tau 0}} \int_0^R (R^2 - r^2) \frac{\partial \overline{\mu} \overline{\mu} \overline{S'}_{rz}}{\partial r} r dr \\ - \frac{1}{\rho_b U_b^2 R e_{\tau 0}} \int_0^R (R^2 - r^2) \frac{\partial \overline{\mu} \overline{S}_{zz}}{\partial z} r dr - \frac{1}{\rho_b U_b^2 R e_{\tau 0}} \int_0^R (R^2 - r^2) \frac{\partial \overline{\mu'} \overline{S'}_{rz}}{\partial z} r dr \\ \underbrace{\tilde{\Phi}(r, z) = \overline{\Phi}(r, z) - 8 \int_0^R \overline{\Phi}(r, z) r dr}_{0}$$

Fully developed pipe flow with constant property fluid16Laminar contribution Re_b

Turbulent contribution

Inhomogeneous contribution

Decomposed skin friction, FIK identity

Decomposed Nusselt number, FIK identity

$$Nu_{FIK} = \underbrace{\frac{32}{\lambda_b(T_w - T_b)} \int_0^R r \overline{\alpha} \frac{\partial \overline{h}}{\partial r} r dr}_{\lambda_b(T_w - T_b)} - \underbrace{\frac{32Re_{\tau 0}Pr_0}{\lambda_b(T_w - T_b)} \int_0^R r \overline{\rho h'' u_r''} r dr}_{0} - \underbrace{\frac{16Re_{\tau 0}Pr_0}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial r} r dr}_{\lambda_b(T_w - T_b)} - \underbrace{\frac{16Re_{\tau 0}Pr_0}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial z} r dr}_{0} + \frac{16Re_{\tau 0}Pr_0}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial z} r dr + \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial z} r dr + \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial z} r dr + \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial z} r dr + \frac{16}{\lambda_b(T_w - T_b)} \int_0^R (R^2 - r^2) \frac{\partial \overline{\rho} \tilde{h} \tilde{u}_r}{\partial z} r dr$$

Laminar contribution

Turbulent contribution

Inhomogeneous contribution

Decomposed Nusselt number, FIK identity

″uDelft

Conclusions

- Thermal effusivity ration has an effect on heat transfer even for Pr > 1 in supercritical flows
- Nusselt number 7% higher for $K = \infty$
- The turbulent heat flux and Reynolds shear stress decrease
- Higher enthalpy fluctuations for $K = \infty$ induce higher density fluctuations, which result in larger velocity fluctuations and thus higher mixing

Thermal activity ratio and Prandtl number examples

Prandtl number	Air * 0.708	Water * 6.78	scCO ₂ ~ 4 - 16
Aluminum	0.00025	0.071	
Nickel based alloy	0.00073	0.207	~0.3
Copper	0.00015	0.044	
Glass	0.00419	1.190	
Plexiglas	0.00942	2.680	

* based on Kasagi et al., Journal of heat transfer, 1989

Temperature rms values for constant properties

Reynolds decomposition of wall heat flux:

$$Q_w = \overline{\alpha} \frac{\partial \overline{h}}{\partial r}|_w + \alpha' \frac{\partial h}{\partial r}|_w + \overline{\alpha} \frac{\partial h'}{\partial r}|_w \rightarrow \frac{\partial \overline{h'^2}}{\partial r} = -\frac{2}{\overline{\alpha}} \overline{h' \alpha' \frac{\partial h}{\partial r}}$$
Delft

Temperature rms values for constant properties

Constant property flow (Pr=3.2)

Supercritical fluid flow (Pr₀=3.2)

$$\frac{\partial \overline{h'^2}}{\partial r} = -\frac{2}{\overline{\alpha}} \overline{h' \alpha' \frac{\partial h}{\partial r}}$$

24 Challenge the future

Radial heat fluxes

Effect of wall thickness on temperature fluctuations

From Tiselj et al. 2001, JHT

Dimensionless wall thickness:

$$y^{++} = \sqrt{\lambda_f / \lambda_s} y^+$$

