

University of Stuttgart Germany

Flow stratification of supercritical CO₂ in a heated pipe

Xu Chu and Eckart Laurien

Institute of Nuclear Technology and Energy Systems (IKE)
University of Stuttgart

xu.chu@ike.uni-stuttgart.de

Agenda

- ☐ Introduction
 - Motivation
 - ☐ Previous work
 - ☐ Aim of study
- Numerical method
 - Governing equations
 - Simulation conditions
- ☐ Results and discussion
 - ☐ Bulk properties
 - Flow stratification
 - Secondary flow
 - Turbulence statistics
- Conclusions

Motivation

Supercritical water reactor (SCWR, HPLWR):

- ☐ High efficiency
- ☐ Compact and simpler system design
- ☐ Water is cheap, non-toxic and transparent
- ☐ Gen IV reactor concept

sCO₂ facility (SCARLETT) at IKE, University of Stuttgart

- $oxed{\square}$ Max. mass flux $\dot{m}=0.1$ (Kg/s), $P_{max}=120$ bar
- ☐ Followed by development of PCHE (sCO2-HeRo Project in EU)

CFD of heat transfer with supercritical fluid

- ☐ Various attempt with different models and solvers
- modelling (classical/advanced) proved to be unreliable
- DNS is needed for further understanding and model imporvement

DNS-A powerful tool for turbulence research

- Details resolved without turbulence modeling
- Limited to simple geometry
- ☐ Very rare, extremly high computational cost
- Bae et al., 2005, Nemati/Pecnik, 2015: vertical pipe, CO_2 , Re_0 =5400, P_0 =8 MPa, house code

Previous work

DNS of vertical pipe

DNS vs. DNS (Bae et al., 2005, Nemati/Pecnik, 2015)

- Re₀=5400, P_0 =8 MPa/8.8 MPa, D=1 mm/2 mm, variable q_w , T_0
- Up to 80 Mio. cells
- DNS data base (10 cases) with average field, tuburlence field, budget,
 spectrum

DNS vs. Experiments

- Experiments from Jiang et al. (U Tsinghua, China), $Re_0=9000$, $P_0=8.8$ MPa, D=2 mm
- Well resolved DNS with 150 Mio. cells

Aim of Study

□ Using DNS to investigate heat transfer of sCO₂ under different conditions including vertical/horizontal pipe, complex geometry and conditions in the future

□ Data serves for model improvement/development (see companion paper by Laurien, Pandey and McEligot)

Agenda

- Introduction
 - Motivation
 - ☐ Previous work
 - ☐ Aim of study
- Numerical method
 - ☐ Governing equations
 - Simulation conditions
- ☐ Results and discussion
 - Bulk properties
 - ☐ Flow stratification
 - Secondary flow
 - Turbulence statistics
- Conclusions and future work

Numerical method

Governing equation

☐ Variation of thermo-physical properties:

Low-Mach N-S equations based on Cartesian Coordinates

$$\frac{\partial(\rho)}{\partial t} + \frac{\partial(\rho U_j)}{\partial x_i} = \mathbf{0}$$

$$\frac{\partial(\rho U_i)}{\partial t} + \frac{\partial(\rho U_i U_j)}{\partial x_i} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_i} (\mu(\frac{\partial U_i}{\partial x_i} + \frac{\partial U_j}{\partial x_i})) \pm \rho g \delta_{i1}$$

$$\frac{\partial(\rho h)}{\partial t} + \frac{\partial(\rho U_j h)}{\partial x_i} = \frac{\partial}{\partial x_i} (k \frac{\partial T}{\partial x_i})$$

$$h = h(P_0, T), T = T(P_0, h), \rho = \rho(P_0, h), \mu = \mu(P_0, h), k = k(P_0, h), C_p = C_p(P_0, h)$$

- ☐ OpenFOAM V2.4 as solver, FVM
- ☐ PISO as the algorithm for P-U coupling, 2-Order spatial/temporal
- Implementation of properties library: NIST

Numerical method

Computational details

Resolution	r	θ	Z	Δr_1^+	$(R\Delta\theta)^+$ (wall)	Δz^+	Δt^+
	168	172	2800	0.11	6.5	4.6	1.1x10 ⁻⁴

- Structured Mesh based on Cartesian Coordinate, 80 Mio. cells
- Fully developed turbulent flow at inlet (Recycle/Rescale BC)
- Used and validated on experiments with heated air (Shehata and McEligot, 1998)

Numerical method

Computational details

- Parallel computation on 1400 CPU cores, 4 days for 10 FTT
- C_f at inlet 0.15% difference as Blasius estimation \rightarrow numerical quality
- Inflow turbulence quality, validated with Wu and Moin,2008

Simulation conditions, P_0 = 8 MPa

Case	Туре	D (mm)	q _w (kW/m²)	Т _о (К)
SC160	Mixed	1	61.74	301.15
SC230F	Forced (g=0)	2	30.87	301.15
SC230	Mixed	2	30.87	301.15
SC260	Mixed	2	61.74	301.15

Agenda

- Introduction
 - Motivation
 - ☐ Previous work
 - ☐ Aim of study
- Numerical method
 - Governing equations
 - Simulation conditions
- ☐ Results and discussion
 - ☐ Bulk properties
 - Flow stratification
 - Secondary flow
 - ☐ Turbulence statistics
- ☐ Conclusions and future work

Bulk properties

Nusselt number Nu Mean wall temperature T_w 800 Top surface Top surface (b) (a) Bottom surface Bottom surface 60 700 SC260 $q_{\rm w}$ ≈60 kW/m² $q_w \approx 30 \text{ kW/m}^2$ 50 600 $q_{\rm w} \approx 60 \text{ kW/m}^2$ Nu $q_{\rm w}$ \approx 30 kW/m² SC230 D=2 mm -SC260 30 500 SC160 20 D=1 mm 400 SC230 10 SC160 SC260 300 15 20 25 5 10 30 35 15 20 25 35 10 30 z/Dz/DΘ=0° Θ=-90° Θ=90°

Bulk properties

- C_f strongly inhomogenous
- Non-monotonical tendency

Flow stratification, SC230, $q_w \approx 30 \text{ kW/m}^2$

Flow stratification, SC260, $q_w \approx 60 \text{ kW/m}^2$

Secondary flow

0.2

0.4

D=2mm,

*q*_w≈60

g

8.0

0.6

r/R

Turbulence statistics

Conclusions

- Effect of buoyancy to the heat transfer of sCO2 in a horizontal pipe using DNS
- Wall temperature T_w and skin friction coefficient strongly inhomogeneous in the circumferential direction
- Secondary flow is built up due to density difference and it transports the heated fluid to the top surface
- Modified mean velocity field and turbulence field

Thank you for your attention.

