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Key Takeaways 
2 

• First experimental characterization of metastable CO2 

• Preliminary CO2 measurements demonstrate applicability of RefProp 

implementation of Span and Wagner equation of state in metastable 

region 
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CO2 Compression for Carbon Capture and Sequestration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

• Mitigation of CO2 emissions require compression to high pressure 

• Compressor power requirements limits large-scale CCS viability 

Imaged Credit: Cal CCS Image Credit Mitsubishi Heavy Industries 



Two-Phase Flow Near Impeller Leading Edge 
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• Acceleration over leading edge leads to localized cooling and 

possible condensation1,2 

• Rapid rate of cooling causes non-equilibrium phase-change 
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Non-Equilibrium Condensation 
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Calculating Metastable State Properties 
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Ideal Gas Approximation 

• Used for low density condensing gases1,2 and gas mixtures2  

Equation of State (EOS) Extrapolation3 

• Current state of the art for metastable steam vapor 

• Span and Wagner is state-of-the-art EOS for CO2  

• Implemented through Refprop 

• Limited to values below EOS spinodal limit 

Direct Tabular Extrapolation4 

• Simpler than EOS extrapolation 

• Invalid for large excursions into two-phase dome 



Equilibrium Pressure-Temperature Diagram 
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Direct Extrapolation of Metastable Properties 7 
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Built-in EOS Extrapolation Capability with RefProp 
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Objectives and Goals 
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• Demonstrate the use of interferometery for density measurement in a 

metastable vapor 

• Fully characterize the thermodynamic state of metastable CO2 

• Determine the ranges of applicability for EOS and direct 

extrapolation methods 



Experimental Blowdown Rig 
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Typical Rig Parameters 

Parameter Typical Value 

Throat Area [mm2] 50 

Tank CO2 Mass [kg] 50-500 

Blowdown Time [s] 0.5-2 
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Con-Di Nozzle as Surrogate for Impeller Leading Edge 
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Absolute Limits on Test-Rig Operating Conditions 
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Test-Section Requirements 
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• Optical access 

• High pressure measurement resolution 

• Ability to easily modify nozzle geometry 

• Short testing turn-around time 



Test-Section Design 
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Interferometry for Nozzle Density Measurement 
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Lamanna et. al.5 

• Measured density distribution across condensation shocks in low 

pressure nitrogen 

• Densities on the order of 1kg/m3 

Duff4 

• Measured densities in condensing CO2 away from the critical point 

• Densities on the order of 10kg/m3 

Current Research 

• Measured densities in condensing CO2 near the critical point 

• Densities on the order of 100-1000kg/m3 



Shearing Interferometer 
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Wavefront Distortion through Nozzle Density Gradient 

18 

Nozzle 

Density 

Gradient 

Coherent 

Wavefront 
Distorted 

Wavefront 



 

Fringe Pattern in Shearing Interferometer 
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1-D Phase Unwrapping Method 
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Post-Processing Procedure 
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2-D Phase Unwrapping Method8 
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Shearing Interferometer Measures Density Gradient 
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Requirement: Beam displacement measurement accuracy < 5 μm 
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Key Idea: Knife Edge Diffraction Pattern 
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• Perpendicular knife edge produces a repeatable pattern to determine 

location 
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Schematic of Displacement Measurement 
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Beam Blocker Setup 
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Knife Edge Detection 
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Displaced Knife Edge Image 
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Displacement Measurement Accurate to 5μm (~2%) 

• Images taken at 4 micrometer settings to compare multiple points 

• Knife edge measurement method yields sub pixel accuracy with error below 5 

microns (order of magnitude improvement over traditional method) 
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Micrometer 

Setting [μm] 

Calculated 

Displacement [μm] 
Error [μm] 

0 0 0 

50 47.12 2.88 

100 103.26 3.26 

150 154.36 4.36 



Mach Waves Limit Observation to Subsonic Section 

• Density gradients make it difficult to determine fringe pattern and 

density in downstream section 

• Improvements in nozzle surface finish and diverging angle will be 

investigated to improve performance 

30 



Mapping Compressor Mach Number to Nozzle 
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• Measurements in nozzle limited to Mach number of 1 

• Typical maximum Mach numbers at impeller leading edge: 1.1-1.2 

• Nozzle total conditions reduced to drive throat conditions farther into 

metastable region. 

• Compressor Mach numbers mapped onto experimental capability to 

characterize metastable behavior in region of interest 



Range of Metastable Region Covered 
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First Experimental Blowdown Runs 
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Metastable Density Comparison: Expansion A 
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Metastable Density Comparison: Expansion B 

35 



Blowdown Run Comparison: Reduced Quantities 
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Conclusions and Future Work 

Conclusions 

• First interferometry measurements in S-CO2 to fully characterize 

metastable state 

• RefProp metastable properties accurate to within 3% 

• Direct (tabular) extrapolation of metastable properties accurate to 

within 7% 

Future Work 

• Quantify error in density measurement at varying total conditions 

• Determine under which conditions direct extrapolation is valid for 

determination of metastable properties 
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