Experimental Validation of Real Gas CO₂ Model near Critical Conditions

March 30, 2016

D. Paxson, C. Lettieri*, Z. Spakovszky

MIT Gas Turbine Lab

P. Bryanston-Cross,

Univ. of Warwick

A. Nakaniwa

Mitsubishi Heavy Industries

*Currently at TU Delft

- First experimental characterization of metastable CO₂
- Preliminary CO₂ measurements demonstrate applicability of RefProp implementation of Span and Wagner equation of state in metastable region

CO₂ Compression for Carbon Capture and Sequestration

Imaged Credit: Cal CCS

Image Credit Mitsubishi Heavy Industries

- Mitigation of CO₂ emissions require compression to high pressure
- Compressor power requirements limits large-scale CCS viability

Two-Phase Flow Near Impeller Leading Edge

- Acceleration over leading edge leads to localized cooling and possible condensation^{1,2}
- Rapid rate of cooling causes non-equilibrium phase-change

Non-Equilibrium Condensation

's Institute

Calculating Metastable State Properties

Ideal Gas Approximation

• Used for low density condensing gases^{1,2} and gas mixtures²

Equation of State (EOS) Extrapolation³

- Current state of the art for metastable steam vapor
- Span and Wagner is state-of-the-art EOS for CO₂
- Implemented through Refprop
- Limited to values below EOS spinodal limit

Direct Tabular Extrapolation⁴

- Simpler than EOS extrapolation
- Invalid for large excursions into two-phase dome

Equilibrium Pressure-Temperature Diagram

Direct Extrapolation of Metastable Properties⁷

Built-in EOS Extrapolation Capability with RefProp

- Demonstrate the use of interferometery for density measurement in a metastable vapor
- Fully characterize the thermodynamic state of metastable CO₂
- Determine the ranges of applicability for EOS and direct extrapolation methods

Experimental Blowdown Rig

Con-Di Nozzle as Surrogate for Impeller Leading Edge

Absolute Limits on Test-Rig Operating Conditions

- Optical access
- High pressure measurement resolution
- Ability to easily modify nozzle geometry
- Short testing turn-around time

Test-Section Design

SECTION A-A

Lamanna et. al.⁵

- Measured density distribution across condensation shocks in low pressure nitrogen
- Densities on the order of 1kg/m³

Duff⁴

- Measured densities in condensing CO₂ away from the critical point
- Densities on the order of **10kg/m³**

Current Research

- Measured densities in condensing CO₂ near the critical point
- Densities on the order of 100-1000kg/m³

Shearing Interferometer

Wavefront Distortion through Nozzle Density Gradient

Fringe Pattern in Shearing Interferometer

1-D Phase Unwrapping Method

Post-Processing Procedure

2-D Phase Unwrapping Method⁸

Raw Image

Discontinuous Phase Map

Continuous Phase Map

Shearing Interferometer Measures Density Gradient

Requirement: Beam displacement measurement accuracy < 5 µm

Key Idea: Knife Edge Diffraction Pattern

 Perpendicular knife edge produces a repeatable pattern to determine location

Schematic of Displacement Measurement

Beam Blocker Setup

Knife Edge Detection

Displaced Knife Edge Image

Displacement Measurement Accurate to 5µm (~2%)

Micrometer Setting [µm]	Calculated Displacement [µm]	Error [µm]
0	0	0
50	47.12	2.88
100	103.26	3.26
150	154.36	4.36

- Images taken at 4 micrometer settings to compare multiple points
- Knife edge measurement method yields sub pixel accuracy with error below 5 microns (order of magnitude improvement over traditional method)

Mach Waves Limit Observation to Subsonic Section

- Density gradients make it difficult to determine fringe pattern and density in downstream section
- Improvements in nozzle surface finish and diverging angle will be investigated to improve performance

Mapping Compressor Mach Number to Nozzle

- Measurements in nozzle limited to Mach number of 1
- Typical maximum Mach numbers at impeller leading edge: 1.1-1.2
- Nozzle total conditions reduced to drive throat conditions farther into metastable region.
- Compressor Mach numbers mapped onto experimental capability to characterize metastable behavior in region of interest

Range of Metastable Region Covered

First Experimental Blowdown Runs

Metastable Density Comparison: Expansion A

Metastable Density Comparison: Expansion B

Blowdown Run Comparison: Reduced Quantities

Conclusions

- First interferometry measurements in S-CO₂ to fully characterize metastable state
- RefProp metastable properties accurate to within 3%
- Direct (tabular) extrapolation of metastable properties accurate to within 7%

Future Work

- Quantify error in density measurement at varying total conditions
- Determine under which conditions direct extrapolation is valid for determination of metastable properties

This research was funded by Mitsubishi Heavy Industries Takasago R&D Center, which is gratefully acknowledged. In particular, the authors would like to thank Dr. Eisaku Ito, and Mr.Akihiro Nakaniwa for their support.

- 1. Baltadjiev ND, Lettieri C, Spakovszky ZS. An Investigation of Real Gas Effects in Supercritical CO2 Centrifugal Compressors. ASME. J. Turbomach. 2015; **137**(9):091003-091003-13. doi:10.1115/1.4029616.
- 2. Rinaldi, E., Pecnik, R., and Colonna, P., 2013, "Steady State CFD Investigation of a Radial Compressor Operating With Supercritical CO2," ASME Paper No.GT2013-94580.
- 3. Guha A. Thermal Choking Due to Nonequilibrium Condensation. ASME. J. Fluids Eng. 1994; **116**(3):599-604. doi:10.1115/1.2910319.
- 4. Duff, K. M., 1964, "Non-Equilibrium Condensation of Carbon Dioxide in Supersonic Nozzles," Master's thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA.
- 5. Lamanna G., van Poppel, J., and van Dongen M. E. H.. "Experimental Determination of Droplet Size and Density Field in Condensing Flows," Experiments in Fluids, **32**(3), p.381, 2002
- Span, R. and Wagner, W., "A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple-Point Temperature to 1100 K at Pressures up to 800 MPa" Journal of Physical and Chemical Reference Data, 25, 1509-1596 (1996),
- 7. Lettieri C, Yang D, Spakovszky Z. An Investigation of Condensation Effects in Supercritical Carbon Dioxide Compressors. ASME. J. Eng. Gas Turbines Power. 2015; **137**(8):082602-082602-8. doi:10.1115/1.4029577
- 8. Lujie, C. "Cross-platform Image-processing Program UU, Singapore Inst. of Tech. and Design. 2014
- 9. International Association, 2007. "International Association for the Properties of Water and Steam: Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam". IAPWS Release, Switzerland, 2007.

