

UNDERSTANDING WET GAS IN A SUPERCRITICAL CO₂ CYCLE

Melissa Poerner, P.E.

Grant Musgrove

Griffin Beck

Craig J. Nolen

Southwest Research Institute

Supercritical CO2 Symposium

What are we going to cover?

When can you get wet gas in a sCO_2 cycle?

What is a Wet Gas Compressor (WGC) and how is it useful for sCO₂ power cycles?

What are technology challenges for WGC?

What's special about wet gas in CO_2 ?

Why does flow visualization matter for WGC?

What are the next steps to make sCO_2 WGC a reality?

Cycle efficiency is critical to a sCO2 power cycle operation

Operating at the critical point increases the risk of falling into the two-phase (gas/liquid) region

How to control/mitigate liquid

Operating Away from Critical Point

> Upstream Separation

Wet Gas Compressor (WCG)

Upstream Gas Temperature and Pressure Control

Can a wet gas compressor improve cycle efficiency?

A WGC can improve cycle efficiency when compared to operating away from the CO_2 critical point

What challenges are there with WGC? Aerodynamic Mechanical

Shaft Sealing

WHAT ARE UNIQUE CHALLENGES OF SCO₂ WGC?

LVF and LMF

Liquid Volume Fraction & Liquid Mass Fraction

Two phase flow inside pipe

Gas

Volume – 1 ft³ Density – 1 lbm/ft³ Mass – 1 lbm

Liquid

 $\label{eq:Volume-0.01 ft^3} \begin{array}{l} \text{Density} - 100 \ \text{lbm/ft^3} \\ \text{Mass} - 1 \ \text{lbm} \end{array}$

LVF = 1%

LVF = Liquid Volume Fraction

LMF = 50%

LMF = Liquid Mass Fraction

LVF and LMF

Liquid Volume Fraction & Liquid Mass Fraction

LVF and LMF

Liquid Volume Fraction & Liquid Mass Fraction

Does the LVF and LMF matter for WGC performance?

Air Volume Flow Rate

LVF and LMF both contribute significantly to the compressor performance in wet conditions

What do we know at this point?

- WGC can lead to improvements in an sCO₂ cycle efficiency
- WGC is still a new technology (lots of challenges)
- The LVF and LMF for an sCO₂ cycle is significantly different than for oil and gas systems
- LVF and LMF are both important for understanding performance
- There is no data for wet gas with sCO₂

WGC performance cannot be currently predicted

Liquid on the aerodynamic surfaces significantly influences WGC performance

LVF 1.0% LVF 3.0%

Flow visualization is required to fully understand wet gas flow and its impact on performance

What are the biggest challenges with flow visualization in a compressor?

Access to critical areas

Providing sufficient light

Fogging/wetting of windows

What techniques can be used for two-phase flow visualization?

- Surface flow visualization
- Particle tracer methods
- Optical reflective index methods
- Light scattering methods
- Photographic methods

Access to the inside of the impeller is one of the most difficult challenges in flow visualization

Shrouded

Unshrouded

Non-optical methods are considered for understanding liquid film thickness on surfaces

Electrical Resistance Probe

What work has been done for WGC flow visualization?

Southwest Research Institute

What work has been done for WGC flow visualization?

Norwegian University of Science and Technology

Now, what do we know?

- WGC performance cannot be predicted
- Liquid attachment to aerodynamic surfaces is significant
- Flow visualization is needed to understand wet gas flow in a compressor
- Flow visualization is difficult due to
 - Access to critical areas
 - Lighting requirements
 - Two-phase flow effects
- Non-optical methods must be considered
- Some work has been done in flow visualization for wet gas

What is needed to make sCO₂ WGC a reality?

