

Universität Stuttgart

5th International CO₂ Power Cycles Symposium March 28-31, 2016, San Antonio, USA

Two-Layer Model for the Heat Transfer to Supercritical CO₂

E. Laurien, S. Pandey Institute of Nuclear Technology and Energy Systems University of Stuttgart, Germany

> D.M. McEligot* Nuclear Engineering Division University of Idaho, USA

Outline

- Introduction
- Two-Layer Model for a Supercritical Fluid
- Extension to Take Account of Buoyancy
- Application to the Low-Temperature Recuperator
- Application to the Reject Heat Exchanger
- Conclusion

Supercritical CO₂-Loop for Energy Conversion MIT-Study

V. Dostal, M.J. Driscoll, P. Hejzlar: A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors , MIT-ANP-TR-100 (2004)

Fluid Properties

oc CO2

W. Lemmon, Marcia L. Huber, and Mark O. McLinden Thermophysical Properties Division National Institute of Standards and Technology Program. REFPROP (2014)

andere Typen

Petukhov et al. [21]

$Nu_{b} = \frac{(\xi_{0}^{c}/8)Re_{b}\overline{Pr}_{b}}{\left[12,7\sqrt{\xi_{0}^{c}/8}\left(\overline{Pr}_{b}^{2/3}-1\right)+1,07\right]} \left(\frac{\eta_{b}}{\eta_{w}}\right)^{0,11} \left(\frac{\lambda_{b}}{\lambda_{w}}\right)^{-0,33} \left(\frac{\overline{c}_{p}}{c_{pb}}\right)^{0,11} \left(\frac{\lambda_{b}}{\lambda_{w}}\right)^{-0,33} \left(\frac{\overline{c}_{p}}{c_{pb}}\right)^{-0,33} \left(\frac{\overline{c}_{p}}{c$

vom Dittus-Boelter Typ

$$Nu_{t} = C_{1}Re_{t}^{m1}Pr_{t}^{m2}\left(\frac{\rho_{w}}{\rho_{b}}\right)^{m3}\left(\frac{\overline{c}_{p}}{c_{pt}}\right)^{m4}C_{2}$$

leferenz	t	C ₁	m ₁	m ₂	m ₃	m 4	C2
ishop et al. [27]	b	0,0069	0,9	0,66	0,43	0,66	(1+2,4 <i>d</i> / <i>l</i>)
0ittus-Boelter, nach [87]	b	0,023	0,8	0,4			
iriem [41]		0,0169	0,8356				$\widetilde{Pr}^{0,432} \cdot \Phi$
ackson und Hall [58]	b	0,0183	0,82	0,5	0,3	n	
wenson et al. [26]	w	0,00459	0,923	0,613	0,231	0,613	
Vatts und Chou [38]	b	0,021	0,8	0,55	0,35	0,55	ϕ
amagata et al. [36]	b	0,0135	0,85	0,8			Fc

diese Korrelationen sind oft sehr ungenau Razumovskiy et al. [39]

$$Nu_{b} = \frac{\left(\xi_{f}/8\right)Re_{b}\overline{Pr}_{b}}{1,07+12,7\sqrt{\xi_{f}/8}\left(\overline{Pr}_{b}^{2/3}-1\right)}\left(\frac{\overline{c}_{p}}{c_{pb}}\right)^{0.65}$$

Grass et al. [57]

$$Nu_{b} = \frac{(\xi_{0}/8) Re_{b} Pr_{b}}{1,07+12,7\sqrt{(\xi_{0}/8)} \left(Pr_{G}^{2/3} \frac{c_{pb}}{c_{pG}} - 1 \right)}$$

$$\xi_{j\psi}^{\varepsilon} = \xi_0^{\varepsilon} \left(\frac{\eta_w}{\eta_b} \frac{\rho_w}{\rho_b} \right)^{0.18} \quad ; \quad \xi_0^{\varepsilon} = \left(1, 82 \log \left(\frac{Re_b}{8} \right) \right)^{-2}$$

Experiments by Kim et al.

77.5 bar heated wall

22.01.2016

Integration Domain an Governing Equations Sub-Headline

Theoretical Description Methods:

- Lookup Table
- CFD (RANS and DNS)
- 1-dimensional theory by Laurien 2012
- Explicit or implicit formulas (model equations), correlations

$$Nu = a \cdot \operatorname{Re}^{e_1} \operatorname{Pr}^{e_2} \left(\frac{\lambda_b}{\lambda_w} \right)^{e_3} \left(\frac{\mu_b}{\mu_w} \right)^{e_4} \left(\frac{\rho_b}{\rho_w} \right)^{e_5} \left(\frac{c_{pb}}{c_{wb}} \right)^{e_6}$$

www.ike.uni-stuttgart.de

Headline Sub-Headline

Result of the Original Method Experiment Li et al.

140 120 100 Ь Temperature P 80 •• 60 ₀ 40 20 0 200 300 400 500 Bulk fluid enthalpy h_h (kJ/kg)

deterioration can be predicted, but some iaccuracies remain

Headline Sub-Headline

	Re	5400	9000	
	L ₂	30D	60D	
Autor: Xu Chu, IKE	Δr_1^+	0.16	0.17	
Code: OpenFoam	Δz^+	7.6	6.6	
Cray XC-40 'HazelHen' des HLRS	$(R\Delta\theta)^+$	9.6	9.5	
ca. 1000 CPU-cores	no of cells	22-70 Mio.	150 Mio.	

Re = 5400 Vertikales beheiztes Rohr

Calibration of the Method

 $Ri_b = \frac{Gr_b}{Re_b^2}$

Acceleration Parameter

 $K_{v} = \frac{4q_{w}\mu_{b}u_{m}}{GD\rho_{b}^{2}}\frac{\partial\rho}{\partial h}\Big|_{b} \quad ; \quad \frac{\partial\rho}{\partial h}\Big|_{b} = \frac{\rho_{b}\beta_{b}}{c_{mb}}$

Extension of the Method

to take account of acceleration and buoyancy

Implementation in the method

$$y_{vs}^{+w} = 11.8 + c_v K_v$$

Parameter for the 'structural' effect of buoyancy

$$y_{cs}^{+w} = \frac{11.8}{\Pr_{cs}^{1/3}} - c_{buoy,in} \cdot Ri_{b}$$

Parameter for the 'external' effect of buoyancy

$$Gr_w = \frac{g\beta_w \ \rho_w^2 D^3 |T_b - T_w|}{\mu_w^2}$$

$$\tau_{w,mod} = \tau_w + (c_{buoy,ex} \times 10^{-7} \ Gr_w) (1 - e^{-z/5D})$$

Low-Temperature Recuperator, Secondary Side 200 bar upward flow

wall shear stress

Low-Temperature Recuperator, Secondary Side 200 bar downward flow

wall shear stress

Low-Temperature Recuperator, Primary Side 80 bar cooling

wall shear stress

Reject-Heat Exchanger 80 bar cooling

wall shear stress

Conclusion

- The two-layer model has been modified to take account of buoyancy and acceleration in a vertical (upeard or downward) supercritical pipe flow at low Reynolds numbers (Re < 10000)
- Wall temperature and wall shear stress are determined as a function of pressure, pipe diameter, wall heat flux (heating or cooling), mass flux, and bulk enthalpy
- Empirical model parameters have been determined using two results of Direct Numerical Simulations
 - must be extended by further work (in progress)
- Model is applied to flows in the low-temperature recuperator and the reject-heat exchanger