The influence of radiative transfer on the turbulent flow inside solar absorbers operating with supercritical CO₂

Stephan Smit, <u>Rene Pecnik</u>, Ashish Patel, and Dirk Roekaerts

Process and Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands

Contents

- Surface vs. volumetric receivers
- Optical properties of scCO₂ and nanoparticles
- Numerical methods
- Investigated cases
- Results
- Conclusions and recommendations

Solar receivers for scCO2 cycle

Selective coating at the surface

- High absorptance for solar band
- Low emittance for infrared band

High wall temperatures

- Radiation inside the receiver
- Relatively large emissive losses
- Low efficiency

Solar receivers for scCO2 cycle

Radiation absorbed by nanoparticles (1 – 100 nm) Optimize absorption with volume fraction & material

Nanoparticles:

- no significant sedimentation velocity
- no significant erosion to the equipment
- do not readily deposit on walls

Nanofluids for solar thermal receivers

Nanofluids solar thermal receivers:

- Hordy et al., Solar Energy, 2014
 - Metal- and carbon based nanoparticles in water and VP1
 - Thermal stability tests up to 220 °C (VP1 boiling temp. 257 °C)
- Metallic nanoparticles:
 - Plasmonic effect

Carbon coated cobalt nanoparticle in VP1 Lenert et al., Solar Energy, 2012

scCO2 used for nanoparticle synthesis (RESS) and mixing:

- G.P. Sanganwar, R.B. Gupta, Powder Technology, 196(1) (2009) 36-49.
- M. Carrott, C. Wai, Analytical chemistry, 70(11) (1998) 2421-2425.

Research questions

- **1.** How does radiation within surface receiver affect performance?
- 2. What is the theoretical potential of volumetric receivers?
 - Comparison surface and volumetric receivers with scCO₂

Optical properties

- scCO₂
- Nanoparticles
- Nanofluid (scCO₂ + nanoparticles)

Optical properties of scCO₂

- HITRAN database \rightarrow spectral lines
- Lorentz broadening of spectral lines
- Sub-Lorentzian behaviour
 - Deviation of Lorentz shape (Perrin & Hartmann, 1989)
 - Extrapolation of empirical relations
- Open-source software to obtain k-spectrum

<u>Refs:</u>

- Rothman et al., 2013. J. of Quantitative Spectroscopy and Radiative Transfer, 130, 4–50.
- Rosenmann, el at., 1988. Applied Optics, 27(18), 3902–3907.

Optical properties of s-CO2

Optical properties of particles

- Two materials chosen with high melting temperatures
 - Nickel and Copper
- Rayleigh scattering theory (Modest, 2012)
 - Very small particles compared to wavelength
 - Transparent medium with particles
 - Low volume fraction

$$\kappa_{\lambda} = -\Im\left(\frac{m^2 - 1}{m^2 + 2}\right)\frac{6\pi\phi}{\lambda}.$$

- Complex index of refraction from literature
 - Ordal et al. (1985), Rakic et al (1998)

Optical properties of particles

TUDelft

Optical properties of particles

• Linear combination of absorption spectra: $\kappa_{nf} = \kappa_p + \kappa_f$

Absorption coefficient

Numerical method

Navier-Stokes solver Radiative transfer solver

Numerical method

• Favre averaged Navier-Stokes equations (enthalpy based)

$$\begin{split} \frac{\partial \overline{\rho} \widetilde{u}_i}{\partial x_j} &= 0, \\ \frac{\partial \overline{\rho} \widetilde{u}_i \widetilde{u}_j}{\partial x_j} &= \frac{\partial \overline{p}_i}{\partial x_i} + \frac{1}{Re_0} \frac{\partial \overline{\tau}_{ij}}{\partial x_j}, \\ \frac{\partial \overline{\rho} \widetilde{h} \widetilde{u}_j}{\partial x_j} &= \frac{\partial}{\partial x_j} \left[\left(\frac{\overline{\alpha}}{Re_0 Pr_0} + \frac{\mu_t}{Pr_t} \right) \frac{\partial \widetilde{h}}{\partial x_j} \right] - R \frac{\partial q_r}{\partial x_j}, \end{split}$$

• Radiative heat source:

$$\frac{\partial q_r}{\partial x_j} = \int_0^\infty \kappa_\lambda \left(4\pi I_{b\lambda} - \int_{4\pi} I_\lambda d\Omega \right) d\lambda,$$

• Radiative transfer equation:

$$\int_0^\infty \frac{dI_\lambda}{ds} d\lambda = \int_0^\infty \kappa_\lambda (I_{b\lambda} - I_\lambda) d\lambda$$

Governing equations

Inhouse RANS and radiative transfer solver:

- Incompressible 2D RANS solver
 - Variable transport properties (NIST, Span & Wagner, 2004)
 - Finite volume method
 - SIMPLE solver
- k-ε turbulence model
 - Myong & Kasagi, 1990
- Radiation model
 - Finite volume method
 - Weighted sum of gray gases

Radiation modeling

- Full k-distribution model (Modest, 2002)
 - Method for reducing number of equations for radiation
 - Convert absorption spectra from wavelength domain to g-space domain using k-distributions
 - Wavelengths with the same absorption coefficient are matched
 - Distributions are more smooth, therefore more suitable to fit
- Weighted Sum of Grey Gasses (WSGG) model
 - Approximation of k-distribution model (Modest, 2002)

Boundary conditions

Boundary conditions: surface receiver

Delft

Challenge the future

18

Boundary conditions: volumetric receiver

Investigated parameter space

Overall boundary conditions		
Receiver inlet temperature	550 °C	
Operating pressure	200 bar	
Receiver length & height	4 m x 2.5 cm	
Reynolds number	7000	
Solar concentration factor	25 / 50 / 75	

Surface receiver		Volumetric receiver	
Front side emissivity	0.9 / 0.95 / 0.99	Volume fraction	10 ⁻³ / 10 ⁻⁴ / 10 ⁻⁵
Back side emissivity	0.0 / 0.5 / 1.0	Critical angle	30° / 50° / 70°

Results

- Surface receiver
- Volumetric receiver

Surface receiver: varying back side emissivity

Surface receiver: varying back side emissivity

Surface receiver: performance

Efficiency definition:

$$\eta_{rec,x} = \frac{\dot{m}(h_x - h_{in})}{q_s A_{rec,x}}$$

side emissivity [$\epsilon_{f,1} = 0.9$]

Desired receiver outlet temperature:

″uDelft

Volumetric receiver: varying volume fraction

Volumetric receiver: varying critical angle

Volumetric receiver: performance

Volume fraction:

Performance comparison

Conclusions

- Absorption peaks for CO₂ at 200 substantially broaden
- Radiative transfer has to be taken into account in surface receivers
 - efficiency 8% higher with radiation
- Substantial higher efficiencies for volumetric receivers for high solar concentration factors
 - Low radiative losses for volumetric receiver -> low surface temperature
 - Radiative losses limited to a thin layer close to the transparent surface

Recommendations

- Turbulent radiation interaction for optically thick media is unknown
- Experiments are crucial to prove concept with nanoparticles in scCO₂
 - Nanoparticle agglomeration and thermal/chemical stability, etc.
- Volumetric receiver design challenging for high pressures

