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This tutorial provides an introduction to S-CO2 in 
power cycle applications 
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S-CO2 loop hardware 

Supercritical CO2  (S-CO2)  

Power cycle applications 

Research and future trends 
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Image source [1-3] 

There are both industrial and natural contributors 
of CO2 in our atmosphere 



11 

Food & 
beverage 

Fire extin-
guishers 

Welding (shield gas) 

Agriculture 

Oil & gas production 
(more info with S-CO2) 

Various image sources [1-4] 

CO2 has many industrial applications 



What is Supercritical CO2? 
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The fluid critical point was discovered by 
Cagniard de la Tour using a pressure cooker 

Image Source: [2-1] 

“Steam digester”  
Invented by Denis Papin 

Cagniard de la Tour (1777-1859) 

Placed a flint ball in the digester filled with liquid such 
that rolling the digester produced a splashing sound 

The splashing sound stopped after heating much 
higher than the liquid boiling temperature 

Experiments with a sealed glass tube at constant 
pressure allowed observation of phase transformation 

Measured the critical temperature of alcohol, ether, 
and water 

Berche et al. (2009) 



Video of Supercritical CO2 
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Image source:  [2-2] 
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A fluid is supercritical if the pressure and 
temperature are greater than the critical values 

REFPROP (2007), EOS CO2: Span & Wagner (1996) 

Pcrit = 7.37 MPa (1070 psi) 
Tcrit = 31°C (88°F) 
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Fluid thermal conductivity is enhanced near the 
critical region 
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Power Cycle Basics 



Power Cycle Basics Overview 

 Carnot – “the standard” 
 Brayton – gas cycle 
 Rankine – vapor cycle 
 Ideal vs. Actual 
 Variations 

40 



Brayton Cycle (Ideal) 
 Processes 

(1-2) Isentropic compression 
(2-3) Const. pres. heat addition 
(3-4) Isentropic expansion 
(4-1) Const. pres. heat reject. 

 Open- or closed-loop 
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Rankine Cycle (Ideal) 
 Processes 

(1-2) Isentropic compression 
(2-3) Const. pres. heat addition 
(3-4) Isentropic expansion 
(4-1) Const. pres. heat reject. 

 Same processes as 
Brayton; different 
hardware 

 Phase changes 
 E.g., steam cycle 
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Ideal vs. Actual Processes 
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1-2, 3-4:  Irreversibilities 

2-3, 4-1:  Pressure losses 

Brayton Rankine 



Power Cycle Variations 

 Regeneration 
 Intercooling 
 Reheating 
 Recompression 

 
 What is supercritical power cycle? 
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…
 



What is a Supercritical Power Cycle? 
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S-CO2 in Power Cycle Applications 



Heat Source Operating Temperature 
Ranges & Efficiencies with S-CO2 

106 
Source:  Wright (2011) 



Supercritical CO2 in Power Cycle 
Applications 
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Nuclear 
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[6-3] 

[6-4] 

[6-5] 

Concentrated  
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Heat Source Operating Temperature 
Range & Efficiency 
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Assumptions (Turbomachinery Eff (MC 85%, RC 87%, T 90%), Wright (2011)  



Nuclear 
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Supercritical CO2 in Power Cycle 
Applications 
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S-CO2: Solar Power Requirements 
(Sunshot Program) 

 Effective Dry Cooling 
 Thermal Energy Storage 
 Affordable $.06/kWh 
 Component Size 

© Southwest Research Institute 2012 110 



Concentrated Solar Power (CSP) 
 The Sun-Motor (1903) 

• Steam Cycle 
• Pasadena, CA 
• Delivered 1400 GPM of water 

 Solar One (1982) 
• 10 MWe water-steam solar 

power tower facility 
• Barstow, CA 
• Achieved 96% availability during 

hours of sunshine 
 Solar Two (1995) 

• Incorporated a highly efficient 
(~99%) molten-salt receiver and 
thermal energy storage system 
into Solar One. 

 Currently  
• 5GW Worldwide 
• 1.8GW US 

111 

Image source: [6-7] 

Image source: [6-6] 



CSP – Improvement Opportunities 
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 Advanced power 
cycles 
• Supercritical steam 

Rankine 
• High temperature 

air Brayton 
• Supercritical CO2 

 Cooling 
• 650 gal H20/MWh 
• Dry-cooling technology 

is needed in most 
desert venues for CSP 

− 43°C Dry bulb 
• Printed circuit heat 

exchangers may 
provide a solution 

 • Supercritical CO2 

Image source: [6-1] 



S-CO2 CSP Process Diagram  
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Dual-shaft, tower receiver S-CO2 Brayton Cycle solar thermal power 
system with thermal energy storage, Zhiwen and Turchi (2011) 

Heliostats 



CSP Efficiencies vs. Power Cycle 
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Data from Stekli (2009) 
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Nuclear 

Fossil Fuel 

Ship-board  
Propulsion  
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S-CO2: Nuclear Requirements 

 Moderate temperature Reactors 
 Affordability (less expensive reactors) 
 Safe and Reliable 

© Southwest Research Institute 2012 116 



Rankine Cycle Application:  Nuclear 
Power Generation 
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Image source: [6-8] 



S-CO2 for Nuclear Applications 
(550°C-700°C, 34 MPa)  
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Image source: [6-4] 

Image source: [6-9] 



Proposed Nuclear S-CO2 Cycles 
 Direct Cycle 

• No primary and 
secondary Na 
loops 

• Lower Void 
Reactivity 

 
 Indirect Cycle 

• No secondary 
Na Loops 

• Smaller core 
size 

119 
Kato et al. (2007) 



Nuclear Plant Efficiency vs. Cycle Prop. 

121 
Kato et al. (2007) 



Advantages of CO2 Cycle vs. Helium 
Cycle in Nuclear Applications 

Pro Con 
Smaller turbomachinery than steam or 
helium 

Helium preferred to CO2 as a reactor 
coolant for cooling capability and 
inertness 

CO2 Brayton cycles are more efficient 
than helium at medium reactor 
temperatures 

CO2 requires a larger reactor than 
helium or an indirect cycle 

CO2 is 10× cheaper than Helium New technology 

122 



Fossil Fuel 
[6-1] [6-2] 

Supercritical CO2 in Power Cycle 
Applications 
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Nuclear 
Ship-board  
Propulsion  

Geothermal 
[6-3] 

[6-4] 

[6-5] 

Concentrated  
Solar Power 



S-CO2: Fossil Fuel Needs 

 Emission Reduction (Sequestration) 
 Affordability 

© Southwest Research Institute 2012 124 



Oxy-Fuel Combustion 
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Conventional Combustion

Air
2 2(78% N , 21% O )

(Solar Turbines 2012)
Fuel

Oxy-Fuel Combustion

Fuel 2H O

2O 2CO



Direct Oxy-Fuel Combustion 
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Indirect Oxy-Fuel Combustion 
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Zero Emission Oxy-Coal Power Plant with Supercritical 
CO2 Cycle, Johnson et al. (2012) 



Ship-board  
Propulsion  

[6-5] 

Nuclear 

Fossil Fuel 

Geothermal [6-1] [6-2] 

[6-3] 

[6-4] 

Concentrated  
Solar Power 

Supercritical CO2 in Power Cycle 
Applications 
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S-CO2: Ship-board Propulsion 

 Size 
 Weight 
 Efficiency 
 Speed 

© Southwest Research Institute 2012 129 



Ship-board Propulsion 
 Nuclear S-CO2 cycles? 
 No implementations yet 
 Improved power to weight 
 Rapid startup 
 Bottoming cycles 

130 Source: Dostal (2004) 

Image source: [6-10] 
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Supercritical CO2 in Power Cycle 
Applications 
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Geothermal 
[6-3] 



Geothermal 
 Low Temperature Heat Source 

• T ≈ 210°C, P ≈ 100 bar 

132 
Pruess (May 19, 2010) 



Other S-CO2 Power Cycle Applications 
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Waste Heat 
Recovery 

Non-Concentrated 
Solar Power 

Zhang (2005) 

Image source: [6-11] 



Waste Heat Recovery (Bottoming) 

 Rankine Cycle Description 
1. Liquid CO2 is pumped to supercritical pressure 
2. S-CO2 accepts waste heat at recuperator and 

waste heat exchanger 
3. High energy S-CO2 is expanded at turbo-

alternator producing power 
4. Expanded S-CO2 is cooled at recuperator and 

condensed to a liquid at condenser 

134 
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Image source: [6-11] 

Image source: [6-12] 



S-CO2 Rankine Cycle in Non-
Concentrated Solar Power 
 NCSP (Trans-critical Rankine) Tt = 180°C 

• ηe,exp = 8.75%-9.45% 
 Photovoltaic 

• ηe,exp = 8.2% 

135 

Zhang (2007) 

Zhang (2005) 



S-CO2 as a Refrigerant 
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Image source: [6-13] 
Image source: [6-14] 



S-CO2 vs R-22 in Refrigeration 

137 Brown (2002) 

 Employed MCHEs 
 Summary 

• CO2 COP vs. R-22 
− 42% Lower at 27.8°C 
− 57% Lower at 40.6°C 

• Majority of entropy 
generation in CO2 
cycle was in the 
expansion device 



S-CO2 in Heat Pumps 

 S-CO2 replaced as a 
refrigerant in domestic heat 
pump hot water heater in 
Japan. 
• COP = 8, 90°C (194°F) 
• Compared to COPtyp=4-5 

138 

EcoCute Heat Pump (2007) 
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S-CO2 Power Cycle  

Research Efforts 



SwRI Machinery Program Projects 
Supporting sCO2 Power Cycle and 

Component Development 



Machinery Program  
sCO2 Related Projects 

 CO2 Pipeline Pulsation Analysis and Mitigation 
 Novel Concepts for the Compression of Large Volumes of CO2 (FC26-05NT42650) 
 Development of a High Efficiency Hot Gas Turbo-Expander and Low Cost Heat Exchangers for 

Optimized CSP Supercritical CO2 Operation (DE-EE0005805) 
 Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion In 

Conjunction With Cryogenic Compression (DE-FE0009395) 
 Electrothermal Energy Storage with A Multiphase Transcritical CO2 cycle (DE-AR0000467) 
 Physics-Based Reliability Models for Supercritical CO2 Turbomachinery Components (DE-FOA-

0000861, PREDICTS) 
 Utility-Scale sCO2 Turbomachinery and Seal Test Rig Development (DE-FOA-0001107) 
 High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion (DE-

FE0024041) 
 High Temperature, High Pressure Compact Heat Exchanger Development (DE-FOA-0001095) 
 Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles (DE-

FOA-0001095) 
 High-Pressure Gas Property Measurements 

 
 



DOE CO2 Compression Project 
Development of Isothermal Compression 

 Pilot-scale 
demonstration of an 
internally cooled 
compressor design 

 Isothermal compressor 
and liquefaction / CO2 
pump equipment design 

 Thermodynamic analysis 
of CO2 separation, 
compression, and 
transport 

 CO2 liquefaction loop for 
proof of concept 
demonstration 
 



sCO2 Expander Test Loop 
Development 

143 



 Scope: Mechanical design of the 1 MW turbine, primary 
objective of mechanical integrity and safety while 
performance is a secondary objective.  

 Final mechanical design review of 1 MW turbine to be 
tested under the SunShot program recently completed 

 Pending approval to advance to phase 2 fabrication  

Objectives & progress 

144 



Test Configuration 
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SwRI B278 

Heater 

sCO2 Pump 

Compressor 

Cooler 



Test Configuration 

146 

Pipe Section Color 
Pump to heater Dark blue 

Mixing line Yellow 
Recuperator to heater Orange 
HT heater to expander Red 

Expander to recuperator Dark 
green 

Recuperator to existing Light 
green 

Existing piping to pump Light blue 



Development of a Supercritical Oxy-combustion Power 
Cycle with 99% Carbon Capture 

Southwest Research Institute® and Thar Energy L.L.C. 
• Engineering development, technology 

assessment,  and economic analysis used to 
evaluate technical risk and cost of a novel 
supercritical oxy-combustion power cycle 

• Optimized cycle couples a coal-fired 
supercritical oxy-combustor with a supercritical 
CO2 power cycle to achieve 40% efficiency at 
low firing temperature, 650 C 

– Cycle is limited by TRL of critical components 
• COE $121/MWe with 99% carbon capture 

– 49% increase over Supercritical Steam Without 
Carbon Capture ($81/MWe), exceeding the 35% 
target 

– 21% reduction in cost as compared to 
Supercritical Steam with 90% Carbon Capture 
($137/MWe).  

• Phase 1 completed in September 2013, 
Extended to March 2014 to cover closeout 

• Budget $1.25 million 
• Ready to demonstrate supercritical oxy-

combustor and critical low TRL technologies 
 

Supported by DOE Project DE-
FE0009395 

 



Project Scope 

 Evaluate a novel supercritical oxy-combustion power 
cycle for meeting the DOE goals of: 
• Over 90% CO2 removal for less than 35% increase in cost 

of electricity (COE) when compared to a Supercritical 
Pulverized Coal Plant without CO2 capture 

 Cycle evaluation based on: 
• Cycle and economic modeling to qualify cost and cycle 

performance 
• Technology gap assessment to identify critical low TRL 

components and technologies 
• Bench scale testing to back up cycle models and evaluate 

state of low TRL technologies 
 Propose development path to address low TRL 

components 
 

DE-FE0009395 Project Closeout 2/21/2014 



Final Supercritical Oxy-combustion 
Cycle Configuration 
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BOOST
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Power 
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Thermal Loop Overall 

Efficiency [%] 48 Thermal 78.9 HHV / 81.8 
LVH 

37.9  HHV / 39.3 
LHV 

CO2 Flow [kg/s] 4887 4930 Recycle 

P high / P low 
[atm] 

290 / 82 100 / 93 

T high / T low [C] 650 / 20 653 / 78 

DE-FE0009395 Project Closeout 2/21/2014 



Combustion Loop TRL 

DE-FE0009395 Project Closeout 2/21/2014 

Component/Sub-system Technology Type 

Operating Conditions 

Assumed or Specified Performance 
Characteristics 

Assumptions Regarding 
Anticipated Application Issues 

Technology 
Readiness 

Inlet Outlet 
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Combustion Loop                 
Coal Pulverizer Generic 25 1 25 1 < 9 kw-h/ton   TRL 9 
Slury Pump Generic 25 1 30 92.25 60% Efficiency   TRL 9 
Supercritical oxy-combustor New vertical flow swirl 

combustor 
450 95 93 92.25 98+% combustion efficiency Combustor to be 

demonstrated in Phase 2 
TRL 6 at the 

completion of Phase 
2 demonstration 

Dry pulverized coal feed Supercritical CO2 slurry 25 1 <450 110 Minimal added water content    TRL 2 
Dry pulverized coal feed Posimetric Pump 25 1 <450 110 Dry feed Demonstrated systems can 

not achieve pressure ratio 
TRL 4 

Removal of solid products of 
combustion 

Lock-hopper 703 92 80 1 Fluid and thermal losses, impact on efficiency 
unknown 

  TRL 4 

Cyclone Separator Generic 703 93 703 91 98% Removal 
3 atm dP 

Materials considerations and 
thermal insulation for hot gas 

cleanup 

TRL 9 

Recouperator (HXMAIN) Compact micro-channel heat 
exchanger 

703 91 460 88 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Pre-heater (HXCLEAN) Compact micro-channel heat 
exchanger 

460 88 162 85 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Sulfur Cleanup Under evaluation for hot, high 
pressure cleanup 

162 85 ? ? Under Evaluation to identify technologies 
compatible with loop conditions 

High efficiency requirements 
drive the need for hot, high 

pressure cleanup 

TRL 5 - 9  
depending on cleanup 

conditions 

Water Removal Under evaluation for hot, high 
pressure cleanup 

162 85 ? ? Under Evaluation to identify technologies 
compatible with loop conditions 

High efficiency requirements 
drive the need for hot, high 

pressure cleanup 

TRL 5 - 9  
depending on cleanup 

conditions 

Boost Pump Generic 150 80 95     Seals and materials for 
supercirtical CO2 

TRL 9 

Air Separation Unit Cryogenic 30 1 450 93 140 kWh/t for 95% O2 based on literature   TRL 9  
                  

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) 
Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) 
Note 3: Materials and manufacturing assumptions for cost and performance 

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-
EE0005804) 



Power Loop TRL 

DE-FE0009395 Project Closeout 2/21/2014 

Component/Sub-system Technology Type 

Operating Conditions 

Assumed or Specified Performance 
Characteristics 

Assumptions Regarding 
Anticipated Application Issues 
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Power Loop Supercritical CO2 
Recompression Cycle 

            TRL 7, See Note 1 

sCO2 Turbo-expander   650 290 509 86 90+% efficiency See Note 4 TRL 7, See Note 1 

Recouperator (HXHIGH) Compact micro-channel heat 
exchanger 

509 86 213 84 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Recouperator (HXLOW) Compact micro-channel heat 
exchanger 

213 84 70 83 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

sCO2 Pump/Compressor    70 83 190 290 05+% efficiency See Note 4 TRL 7, See Note 2 

sCO2 Pump/Compressor    25 82 60 290 05+% efficiency See Note 4 TRL 7, See Note 2 

Pre-cooler Compact micro-channel heat 
exchanger 

70 83 25 82 5 C Pinch Point 
3 atm dP 

See Note 3 TRL 7, See Note 1 

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) 
Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) 
Note 3: Materials and manufacturing assumptions for cost and performance 
Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-
EE0005804) 



Technology Development: Proposed 
follow on 
 1 MWth Supercritical Oxy-combustor 

Demonstration  
 Test bed for technology development 

• Supercritical oxy-combustor 
• Particulate cleaning of the compact 

microchannel heat exchanger 
• Solids injection at pressure 
• Solids removal at pressure 

 Advance technologies from TRL 2, 
Technology Concept, to TRL 6, Pilot 
Scale System Demonstrated in a 
Relevant Environment  

 Operate with coal water slurry, plan 
for dry feed or sCO2 slurry extension 

 

DE-FE0009395 Project Closeout 2/21/2014 

Supercritical  
Oxy-combustor Cyclone 

Separator 

Underflow  
Particulate  
Separation 

Boost 
Compressor Water  

Scrubber 

Supercritical  
Oxy-combustor 

Cyclone 
Separator 

Underflow  
Particulate  
Separation 

Water  
Scrubber 

Cooling Tower 



Oxy-Combustion Test Loop 
• Major components  

– Charge Compressor or Pressurized CO2 
Feed 

– Combustor 
• Oxygen feed 
• Coal slurry feed 

– Cyclone separator 
• Solids removal and handling 

– Recuperater 
– Water scrubber and cleanup 

• Liquid removal and handling 
• CO2 removal and handling 

– Cooling Tower 

– Boost Compressor 
• Operating Conditions 

– 450 – 650 C (800 – 1200 F) 
– 102 atm (1500 psi) 

• Flow Rates: 1 MWth 
– 3.4 kg/s Hot side flow rate  
– 3.2 kg/s  CO2 recycle 
– 0.05 kg/s Coal feed 
– 0.08 kg/s O2 Feed 
– 4.25 kg/s H2O Recycle 

DE-FE0009395 Project Closeout 
2/21/2014 
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Analysis of the Recuperated 
Cryogenic Pressurized Oxy-
Combustion Cycle (CPOC) 

 
Aaron McClung, Ph.D. 
Sr. Research Engineer 

aaron.mcclung@swri.org   
210-522-2677 

 

mailto:aaron.mcclung@swri.org


Initial Cycle: Cryogenic  
Pressurized Oxy-combustion (CPOC) 

 Transcritical cycle (gas, liquid, and supercritical 
states)  

 Leverage iso-thermal compression to minimize 
compression work 
 

DE-FE0009395 Project Closeout 2/21/2014 



Recuperated CPOC 

High temperature recuperator  
• Hot stream: Turbine outlet 
• Cold stream: Low temperature recuperator 
• Assume 10 C pinch point 
Low temperature recuperator 
• Hot stream: Iso-thermal compressor outlet 
• Cold stream: Dense phase pump 
• Assume 5 C pinch point 

 

Performance tweaks 
• Iso-thermal compressor 

– Reduce pressure ratio (Increases refrigeration 
requirements) 

– Assume 20% of adiabatic temperature rise 
• Turbine inlet pressure between 145 and 175 bar 
• Assume 5C of sub-cooling for refrigeration 
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Add high temperature recuperator after expander, low temperature 
recuperator after compressor 



Baseline Recompression Cycle 
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Efficiency Comparison 
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Temperature (C) 

Recompression (290
bar)
Recuperated CPOC
(150/5 bar)
Recuperated CPOC
(150/10 bar)
Baseline CPOC
(300/20 bar)

  CPOC Recompression 
Efficiency 63.85% 64.00% 
Turbine Inlet Temp (C) 1200 1200 
Turbine Inlet Pressure (bar) 150 290 
Turbine Outlet Pressure (bar) 1 100 
Mass flow (kg/s) 1.00 1.00 
W net (MW) 0.830 0.221 
Q in (MW) 1.300 0.345 
HX high (MW) 0.451 0.992 
HX low (MW) 0.010 0.154 

Total Recuperation (MW) 0.461 1.146 

Scaled to 550 MWe plant, parasitic losses neglected 
CPOC Recompression 

Mass flow (kg/s)                   662.65                 2,488.69  
W net (MW)                   550.00                    550.00  
Q in (MW)                   861.45                    858.60  
HX high (MW)                   298.86                 2,468.78  
HX low (MW)                        6.63                    383.26  
Total Recuperation (MW)                   305.48                 2,852.04  

Recuperated CPOC performs on par 
with the recompression cycle, has 
larger thermal input window, higher 
power density, and requires less 
recuperation 
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FUNDAMENTAL GAS PROPERTY 
TESTING 

• Fundamental gas property tests 
for  high H2S and CO2 content 
mixtures, falling outside of typical 
EOS model limits: speed of sound, 
specific heat, and density up to 
15,000 psi, 400°F. 

• Adapted high pressure autoclaves 
/ adiabatic calorimeters for specific 
heat determination. 

• Specialized test methods for 
speed of sound using high 
pressure fixture design developed 
by SwRI. 

• Gas sampling and species 
determination near critical point. 

• Controlled long-term tests using 
for H2S / CO2 / water mixtures to 
characterize gas-liquid behavior. 



Compressor Map with Transient Events from 17800 RPM
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COMPRESSOR STATION DESIGN 

 API 618 Standard Analyses: Pulsation, 
Mechanical and Thermal Analysis of 
Reciprocating Compressor Systems 

 1-D / 3-D Pulsation Analysis 
 Simulation of piping components for design 

review: Regulators, check valves, process valves, 
heat exchanger components 

 Larger pipeline system modeling and simulation: 
Pump / compressor optimization, Leak detection, 
MAOP Limit analysis 

 Transient surge / Surge control 
 Blow-down station analysis and  

Acoustic-Induced Vibration 
 



DOE S-CO2 Test Program 

 Research compression loop 
• Turbomachinery performance 

 Brayton cycle loop 
• Different configurations possible 

− Recuperation, Recompression, Reheat 
• Small-scale proof-of-technology plant 
• Small-scale components 

− Different than hardware for commercial scale 
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Barber Stockwell, Sandia National Laboratories,  



DOE S-CO2 Test Program 
Turbomachinery 
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100 mm 

Source:  Wright (2011) 



S-CO2 Brayton Cycle Test Loop 

175 
Source:  Wright (2011) 



S-CO2 Brayton Cycle Test Loop 

176 
Source:  Wright (2011) 



S-CO2 Brayton Cycle with Regeneration  

177 
Source:  Conboy et al. (2012) 



S-CO2 Brayton Cycle with Regeneration  

178 
Source:  Conboy et al. (2012) 



S-CO2 Brayton Cycle with Regen. + Recomp. 

179 
Source:  Wright (2011) 



S-CO2 Brayton Cycle Performance 
with Regeneration Config. 

180 
Source:  Conboy et al. (2012) 

Maximum Case:   
Total Turbine Work, 92 kW 

Improve with larger scale: 
• Windage losses 
• Thermal losses 
• Seal leakage  



DOE S-CO2 Test Program Summary 

 Major milestones 
• Test loops operational 
• Demonstrate process stability/control 

 Areas for future development 
• Heat exchanger performance 
• Larger scale test bed  

− Utilize commercial-scale hardware 
− Demonstrate more-realistic (better) performance 

• CO2 mixtures 
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Printed Circuit Heat Exchanger (PCHE) 

182 
Heatric PCHE 

Le Pierres (2011) 

S-CO2 test loop used by Sandia/ Barber-Nicholls 



Heat Exchanger Testing (Bechtel) 
 150 kW 
 8000 lbm/hr S-CO2 

 2500 psi 

183 
Nehrbauer (2011) 



Tokyo Institute of Technology (TIT) 

184 
(Kato et al., 2007) 



TIT, New Micro-Channel Heat 
Exchanger 

185 
(Kato et al., 2007) 



TIT, Heat Exchanger Testing 
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(Kato et al., 2007) 

3kW 

19,21 kW 

TokyoTech,  
(S-Shaped Fins) 

HEATRIC 
(Zigzag Fins) 



TIT, Heat Transfer Rate vs. Pressure 
Drop 
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 Kato et al. (2007) 



Corrosion Loop at Tokyo Institute of 
Technology  
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316 SS, 12% Cr alloy, 200-600°C, 10 Mpa CO2, Kato et al. (2007) 



Other S-CO2 Corrosion Test Facilities 

 MIT - 650°C, 22 MPa 
• Steels 

 UW - 650°C, 27 MPa 
• Steels 

 French Alternative Energies and Atomic 
Energy Commission - 550°C, 25 MPa 
• Steels  

 MDO Labs – 54.4°C, 12.4 MPa 
• Elastomers, engineering plastics, rubbers, 

etc.  
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Guoping (2009) 



Geothermal Research 
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Schematic of EGS with S-CO2 
Pruess (May 18, 2010) 

 Explore the feasibility of operating enhanced geothermal systems (EGS) with CO2 
as heat transmission fluid  

 Collaboration between LBNL (Pruess), UC Berkeley (Glaser), Central Research 
Institute of the Electric Power Industry, Japan (Kaieda) and Kyoto University 
(Ueda) 
• UC Berkeley: laboratory testing of CO2 heat extraction 
• Japan: inject brine-CO2 mixtures into Ogachi HDR site (T ≈ 210°C, P ≈ 100 bar) 
• LBNL: model reactive chemistry induced by brine-CO2 injection 
 
 

Ogachi, Japan – HDR Site 
Pruess (May 19, 2010) 



S-CO2 Critical Flow (Univ. Wisconsin) 
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(Anderson, 2009) 



S-CO2 High Pressure Compression 
(Dresser-Rand) 
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(GT2012-70137) 

Tupi - I Tupi - III 



Future Trends for  

S-CO2 Power Cycles 
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Future trends and research needs 

Rotordynamics 
Analysis of rotor-dynamic cross-coupling coefficients for S-CO2 

Heat Exchangers 
Improved heat transfer correlations near the critical region for varying geometries 
Improve resolution of local heat transfer measurements 
Heat exchanger durability – studying effects of material, fabrication, channel geometry, 
fouling, corrosion, and maintenance 

Materials 
Long term corrosion testing (10,000 hrs) 
Corrosion of diffusion-bonded materials (PCHE HX) 
Coatings to limit/delay corrosion 
Corrosion tests under stress 
 
 

Pulsation analysis 
Development of transient pipe flow analysis models for S-CO2  

Intermediate-scale is needed to demonstrate commercial viability of full-
scale technologies (i.e. 10 Mwe) 
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Detailed models of turbo machinery 
Improved transient analysis – surge, shutdown events 

Fluid properties 
Mixture of S-CO2 and other fluids  
Physical property testing of CO2 mixtures at extreme conditions with significantly reduced 
uncertainties (i.e. < 1%) 

Control System and Simulation 

Future trends and research needs 



Summary 
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Both supercritical power cycles and the use of    
S-CO2 are not new concepts 

S-CO2 is used in a variety of industries as a solvent 

S-CO2 is desirable for power cycles because of its near-critical fluid 
properties 

Supercritical 
region

CO2
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S-CO2 power cycles can be applied to many heat 
sources and have a small footprint  

The near ambient critical temperature of CO2 allows it to be matched with a 
variety of thermal heat sources  

The combination of favorable property variation and high fluid density of S-
CO2 allows small footprint of machinery 

Concentrated 
Solar Power

Nuclear

Fossil Fuel

Ship-board 
Propulsion 

Geothermal

PR = 1.4
Air
S-CO2

Air
S-CO2

PR = 2.0
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The near future goal is to improve understanding 
and develop commercial-scale power  

International S-CO2 power cycle research is ongoing 

More research is needed S-CO2 power cycle applications 

Power production test loops 

Machinery component test loops Fluid property testing 

Materials corrosion test facilities 

Intermediate scale (10MW) demonstration  

Materials testing at high temperature, pressure and stress 

Property testing with S-CO2 mixtures 

Rotordynamics with S-CO2 

S-CO2 heat transfer and heat exchangers 

More detailed dynamic simulation and control systems 

Questions? 
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