ASME Turbo Expo 2014 Düsseldorf Germany, June 16-21, 2014

Fundamentals of Supercritical CO₂

Presentation by:

Jason C. Wilkes, Ph.D.

Southwest Research Institute

June 16, 2014

This tutorial provides an introduction to S-CO₂ in power cycle applications

Hatter Turk A (1) Heater Heater

S-CO₂ loop hardware

Concentrated Solar Power

Shin-h

Ship-board Propulsion

Power cycle applications

Research and future trends

There are both industrial and natural contributors of CO₂ in our atmosphere

CO₂ has many industrial applications

Agriculture

Welding (shield gas)

Oil & gas production (more info with S-CO₂)

What is Supercritical CO₂?

The fluid critical point was discovered by Cagniard de la Tour using a pressure cooker

"Steam digester" Invented by Denis Papin

Image Source: [2-1]

Cagniard de la Tour (1777-1859)

Placed a flint ball in the digester filled with liquid such that rolling the digester produced a splashing sound

The splashing sound stopped after heating much higher than the liquid boiling temperature

Experiments with a sealed glass tube at constant pressure allowed observation of phase transformation

Measured the critical temperature of alcohol, ether, and water

Berche et al. (2009)

Video of Supercritical CO₂

Image source: [2-2]

A fluid is supercritical if the pressure and temperature are greater than the critical values

Entropy (kJ/kg-K)

REFPROP (2007), EOS CO₂: Span & Wagner (1996)

Fluid thermal conductivity is enhanced near the critical region

The ratio of specific heats peaks near the critical region

REFPROP (2007)

Power Cycle Basics

Power Cycle Basics Overview

- □ Carnot "the standard"
- □ Brayton gas cycle
- □ Rankine vapor cycle
- Ideal vs. Actual
- Variations

Brayton Cycle (Ideal)

Processes

(1-2) Isentropic compression
(2-3) Const. pres. heat addition
(3-4) Isentropic expansion
(4-1) Const. pres. heat reject.

Open- or closed-loop

 $\eta_{th,Brayton} = 1 - PR^{(1-k)/k}$

Optimal PR for net work

Rankine Cycle (Ideal)

Processes

(1-2) Isentropic compression (2-3) Const. pres. heat addition (3-4) Isentropic expansion (4-1) Const. pres. heat reject.

- □ Same processes as Brayton; different hardware
- □ Phase changes
- □ E.g., steam cycle

 $\eta_{th} = 1 - Q_{in}/Q_{out}$

Ideal vs. Actual Processes

1-2, 3-4: Irreversibilities

2-3, 4-1: Pressure losses

Power Cycle Variations

- Regeneration
- Intercooling
- Reheating
- Recompression
- □ What is supercritical power cycle?

What is a Supercritical Power Cycle?

Entropy, S

S-CO₂ in Power Cycle Applications

Heat Source Operating Temperature Ranges & Efficiencies with S-CO₂

Assumptions (Turbomachinery Eff (85%/87%/90% : MC/RC/T), 5 K Approach T, 5% dp/p losses, Hotel Losses Not In Included, Dry Cooling at 120 F)

Source: Wright (2011)

Supercritical CO₂ in Power Cycle **Applications** Inject Cold CO₂

Fossil Fuel

Hot CO₂ -Calcite: Sealing Zone 200°C Zone 1 Supercritical CO2 [6-3]

Geothermal

Concentrated Solar Power

[6-4]

[6-5]

Ship-board Propulsion

Heat Source Operating Temperature Range & Efficiency

Assumptions (Turbomachinery Eff (MC 85%, RC 87%, T 90%), Wright (2011)

Supercritical CO₂ in Power Cycle Applications

Cold CO₂ 180°C 200°C 20°C 200°C 200°C

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

SwRI

[6-5]

S-CO₂: Solar Power Requirements (Sunshot Program)

- □ Effective Dry Cooling
- Thermal Energy Storage
- □ Affordable \$.06/kWh
- Component Size

Concentrated Solar Power (CSP)

- □ The Sun-Motor (1903)
 - Steam Cycle
 - Pasadena, CA
 - Delivered 1400 GPM of water
- □ Solar One (1982)
 - 10 MW_e water-steam solar power tower facility
 - Barstow, CA
 - Achieved 96% availability during hours of sunshine
- □ Solar Two (1995)
 - Incorporated a highly efficient (~99%) molten-salt receiver and thermal energy storage system into Solar One.
- Currently
 - 5GW Worldwide
 - 1.8GW US

Image source: [6-6]

Image source: [6-7]

CSP – Improvement Opportunities

Advanced power cycles

- Supercritical steam Rankine
- High temperature air Brayton
- Supercritical CO₂

□ Cooling

- 650 gal H₂0/MWh
- Dry-cooling technology is needed in most desert venues for CSP – 43°C Dry bulb
- Printed circuit heat exchangers may provide a solution

S-CO₂ CSP Process Diagram

Dual-shaft, tower receiver $S-CO_2$ Brayton Cycle solar thermal power system with thermal energy storage, Zhiwen and Turchi (2011)

CSP Efficiencies vs. Power Cycle

Data from Stekli (2009)

Supercritical CO₂ in Power Cycle Applications

Cold CO₂ IBO'C 200°C 200°

Geothermal

Concentrated Solar Power

Fossil Fuel

[6-4]

Nuclear

Ship-board Propulsion [6-5]

S-CO₂: Nuclear Requirements

- □ Moderate temperature Reactors
- □ Affordability (less expensive reactors)
- □ Safe and Reliable

Rankine Cycle Application: Nuclear Power Generation

Image source: [6-8]

S-CO₂ for Nuclear Applications (550°C-700°C, 34 MPa)

Image source: [6-9]

Image source: [6-4]

118

Proposed Nuclear S-CO₂ Cycles

pump Rec

Recuperator

Kato et al. (2007)

Nuclear Plant Efficiency vs. Cycle Prop.

Advantages of CO₂ Cycle vs. Helium Cycle in Nuclear Applications

Pro	Con
Smaller turbomachinery than steam or helium	Helium preferred to CO ₂ as a reactor coolant for cooling capability and inertness
CO ₂ Brayton cycles are more efficient than helium at medium reactor temperatures	CO ₂ requires a larger reactor than helium or an indirect cycle
CO_2 is 10x cheaper than Helium	New technology

Supercritical CO₂ in Power Cycle Applications

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

SwRI

[6-5]

S-CO₂: Fossil Fuel Needs

Emission Reduction (Sequestration)
 Affordability

Oxy-Fuel Combustion

Direct Oxy-Fuel Combustion

Indirect Oxy-Fuel Combustion

Supercritical CO₂ in Power Cycle Applications

Geothermal

Concentrated Solar Power

Fossil Fuel

[6-5]

Ship-board Propulsion

S-CO₂: Ship-board Propulsion

- □ Size
- Weight
- □ Efficiency
- □ Speed

Ship-board Propulsion

- □ Nuclear S-CO₂ cycles?
- No implementations yet
- Improved power to weight
- Rapid startup
- Bottoming cycles

Image source: [6-10]

Steam turbine: 55 stages / 250 MW Mitsubishi Heavy Industries Ltd, Japan (with casing) 5 m Helium turbine: 17 stages / 333 MW (167 MW_e) X.L.Yan, L.M. Lidsky (MIT) (without casing) Supercritical CO₂ turbine: 4 stages / 450 MW (300 MW_e) (without casing) Compressors are of comparable size Source: Dostal (2004)

Supercritical CO₂ in Power Cycle Applications

Inject Hot CO₂ Out Cold CO₂ Out Calcite: Sealing Zone 180°C 200°C Zone 1 Supercritical CO₂ CO₂ + Water (increased) percentical CO₂ CO₂ + Water (increased) Water + Dissolved CO₂

Geothermal

Concentrated Solar Power

Fossil Fuel

Ship-board Propulsion

[6-5]

Geothermal

□ Low Temperature Heat Source

• T ≈ 210°C, P ≈ 100 bar

Other S-CO₂ Power Cycle Applications

Image source: [6-11]

Waste Heat Recovery

Non-Concentrated Solar Power

Waste Heat Recovery (Bottoming)

□ Rankine Cycle Description

- 1. Liquid CO_2 is pumped to supercritical pressure
- 2. S-CO2 accepts waste heat at recuperator and waste heat exchanger
- 3. High energy S-CO₂ is expanded at turboalternator producing power
- 4. Expanded S-CO₂ is cooled at recuperator and condensed to a liquid at condenser

COOLED

S-CO₂ as a Refrigerant

Image source: [6-13]

Image source: [6-14]

S-CO₂ vs R-22 in Refrigeration

- □ Employed MCHEs
- □ Summary
 - CO₂ COP vs. R-22
 - -42% Lower at 27.8°C
 - 57% Lower at 40.6°C
 - Majority of entropy generation in CO2 cycle was in the expansion device

S-CO₂ in Heat Pumps

- S-CO₂ replaced as a refrigerant in domestic heat pump hot water heater in Japan.
 - COP = 8, 90°C (194°F)
 - Compared to $COP_{typ}=4-5$

$$\left(COP = \frac{Q_h + W_e}{W_e}\right)$$

Image source: [6-14]

EcoCute Heat Pump (2007)

S-CO₂ Power Cycle Research Efforts

SwRI Machinery Program Projects Supporting sCO2 Power Cycle and Component Development

Machinery Program sCO2 Related Projects

- CO2 Pipeline Pulsation Analysis and Mitigation
- □ Novel Concepts for the Compression of Large Volumes of CO2 (FC26-05NT42650)
- Development of a High Efficiency Hot Gas Turbo-Expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO2 Operation (DE-EE0005805)
- Novel Supercritical Carbon Dioxide Power Cycle Utilizing Pressurized Oxy-combustion In Conjunction With Cryogenic Compression (DE-FE0009395)
- Electrothermal Energy Storage with A Multiphase Transcritical CO2 cycle (DE-AR0000467)
- Physics-Based Reliability Models for Supercritical CO2 Turbomachinery Components (DE-FOA-0000861, PREDICTS)
- Utility-Scale sCO2 Turbomachinery and Seal Test Rig Development (DE-FOA-0001107)
- High Inlet Temperature Combustor for Direct Fired Supercritical Oxy-Combustion (DE-FE0024041)
- □ High Temperature, High Pressure Compact Heat Exchanger Development (DE-FOA-0001095)
- Development of a Thin Film Primary Surface Heat Exchanger for Advanced Power Cycles (DE-FOA-0001095)
- High-Pressure Gas Property Measurements

DOE CO₂ Compression Project Development of Isothermal Compression

- Pilot-scale demonstration of an internally cooled compressor design
- Isothermal compressor and liquefaction / CO₂ pump equipment design
- Thermodynamic analysis of CO₂ separation, compression, and transport
- CO₂ liquefaction loop for proof of concept demonstration

sCO₂ Expander Test Loop Development

Objectives & progress

- Scope: Mechanical design of the 1 MW turbine, primary objective of mechanical integrity and safety while performance is a secondary objective.
- Final mechanical design review of 1 MW turbine to be tested under the SunShot program recently completed
- Pending approval to advance to phase 2 fabrication

Test Configuration

Test Configuration

	Pipe Section	Color
	Pump to heater	Dark blue
	Mixing line	Yellow
	Recuperator to heater	Orange
	HT heater to expander	Red
		Dark
3	Expander to recuperator	areen
		Light
	Recuperator to existing	areen
	Existing piping to pump	
		146

Development of a Supercritical Oxy-combustion Power Cycle with 99% Carbon Capture Southwest Research Institute® and Thar Energy L.L.C.

- Engineering development, technology assessment, and economic analysis used to evaluate technical risk and cost of a novel supercritical oxy-combustion power cycle
- Optimized cycle couples a coal-fired supercritical oxy-combustor with a supercritical CO₂ power cycle to achieve 40% efficiency at low firing temperature, 650 C
 - Cycle is limited by TRL of critical components
- COE \$121/MWe with 99% carbon capture
 - 49% increase over Supercritical Steam Without Carbon Capture (\$81/MWe), exceeding the 35% target
 - 21% reduction in cost as compared to Supercritical Steam with 90% Carbon Capture (\$137/MWe).
- Phase 1 completed in September 2013, Extended to March 2014 to cover closeout
- Budget \$1.25 million
- Ready to demonstrate supercritical oxycombustor and critical low TRL technologies

Project Scope

- Evaluate a novel supercritical oxy-combustion power cycle for meeting the DOE goals of:
 - Over 90% CO2 removal for less than 35% increase in cost of electricity (COE) when compared to a Supercritical Pulverized Coal Plant without CO₂ capture
- □ Cycle evaluation based on:
 - Cycle and economic modeling to qualify cost and cycle performance
 - Technology gap assessment to identify critical low TRL components and technologies
 - Bench scale testing to back up cycle models and evaluate state of low TRL technologies
- Propose development path to address low TRL components

Final Supercritical Oxy-combustion Cycle Configuration

Combustion Loop TRL

		Ope	erating	Conditi	ons	-		
Component/Sub-system	Technology Type	Temperature [C] <u>∋</u>	Pressure [atm]	Temperature [C]	Pressure [atm]	Assumed or Specified Performance Characteristics	Assumptions Regarding Anticipated Application Issues	Technology Readiness
Combustion Loop								
Coal Pulverizer	Generic	25	1	25	1	< 9 kw-h/ton		TRL 9
Slury Pump	Generic	25	1	30	92.25	60% Efficiency		TRL 9
Supercritical oxy-combustor	New vertical flow swirl combustor	450	95	93	92.25	98+% combustion efficiency	Combustor to be demonstrated in Phase 2	TRL 6 at the completion of Phase 2 demonstration
Dry pulverized coal feed	Supercritical CO2 slurry	25	1	<450	110	Minimal added water content		TRL 2
Dry pulverized coal feed	Posimetric Pump	25	1	<450	110	Dry feed	Demonstrated systems can not achieve pressure ratio	TRL 4
Removal of solid products of combustion	Lock-hopper	703	92	80	1	Fluid and thermal losses, impact on efficiency unknown		TRL 4
Cyclone Separator	Generic	703	93	703	91	98% Removal 3 atm dP	Materials considerations and thermal insulation for hot gas cleanup	TRL 9
Recouperator (HXMAIN)	Compact micro-channel heat exchanger	703	91	460	88	5 C Pinch Point 3 atm dP	See Note 3	TRL 7, See Note 1
Pre-heater (HXCLEAN)	Compact micro-channel heat exchanger	460	88	162	85	5 C Pinch Point 3 atm dP	See Note 3	TRL 7, See Note 1
Sulfur Cleanup	Under evaluation for hot, high pressure cleanup	162	85	?	?	Under Evaluation to identify technologies compatible with loop conditions	High efficiency requirements drive the need for hot, high pressure cleanup	TRL 5 - 9 depending on cleanup conditions
Water Removal	Under evaluation for hot, high pressure cleanup	162	85	?	?	Under Evaluation to identify technologies compatible with loop conditions	High efficiency requirements drive the need for hot, high pressure cleanup	TRL 5 - 9 depending on cleanup conditions
Boost Pump	Generic	150	80	95			Seals and materials for supercirtical CO2	TRL 9
Air Separation Unit	Cryogenic	30	1	450	93	140 kWh/t for 95% O2 based on literature		TRL 9

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804)

Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650)

Note 3: Materials and manufacturing assumptions for cost and performance

Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804)

Power Loop TRL

		Ор	erating	Conditio	ons			
		In	let	Ou	tlet			
Component/Sub-system	Technology Type	Temperature [C]	Pressure [atm]	Temperature [C]	Pressure [atm]	Assumed or Specified Performance Characteristics	Assumptions Regarding Anticipated Application Issues	Technology Readiness
Power Loop	Supercritical CO2 Recompression Cycle							TRL 7, See Note 1
sCO2 Turbo-expander		650	290	509	86	90+% efficiency	See Note 4	TRL 7, See Note 1
Recouperator (HXHIGH)	Compact micro-channel heat exchanger	509	86	213	84	5 C Pinch Point 3 atm dP	See Note 3	TRL 7, See Note 1
Recouperator (HXLOW)	Compact micro-channel heat exchanger	213	84	70	83	5 C Pinch Point 3 atm dP	See Note 3	TRL 7, See Note 1
sCO2 Pump/Compressor		70	83	190	290	05+% efficiency	See Note 4	TRL 7, See Note 2
sCO2 Pump/Compressor		25	82	60	290	05+% efficiency	See Note 4	TRL 7, See Note 2
Pre-cooler	Compact micro-channel heat exchanger	70	83	25	82	5 C Pinch Point 3 atm dP	See Note 3	TRL 7, See Note 1

Note 1: TRL 7 at the completion of a compantion DOE SunShot Project in 2016 (DE-EE0005804) Note 2: TRL 7 at the completion of a compantion DOE SunShot Project in 2013 (FC26-05NT42650) Note 3: Materials and manufacturing assumptions for cost and performance Note 4: Turbomachinery layout and design is being adressed in other DOE sponsored programs (DE-EE0005804)

Technology Development: Proposed follow on

- I MWth Supercritical Oxy-combustor Demonstration
- Test bed for technology development
 - Supercritical oxy-combustor
 - Particulate cleaning of the compact microchannel heat exchanger
 - Solids injection at pressure
 - Solids removal at pressure
- Advance technologies from TRL 2, Technology Concept, to TRL 6, Pilot Scale System Demonstrated in a Relevant Environment
- Operate with coal water slurry, plan for dry feed or sCO2 slurry extension

Oxy-Combustion Test Loop

- Major components
 - Charge Compressor or Pressurized CO2 Feed
 - Combustor
 - Oxygen feed
 - Coal slurry feed
 - Cyclone separator
 - Solids removal and handling
 - Recuperater
 - Water scrubber and cleanup
 - Liquid removal and handling
 - CO2 removal and handling
 - Cooling Tower

- Boost Compressor
- Operating Conditions
 - 450 650 C (800 1200 F)
 - 102 atm (1500 psi)
- Flow Rates: 1 MWth
 - 3.4 kg/s Hot side flow rate
 - 3.2 kg/s CO2 recycle
 - 0.05 kg/s Coal feed
 - 0.08 kg/s O2 Feed
 - 4.25 kg/s H2O Recycle

Analysis of the Recuperated Cryogenic Pressurized Oxy-Combustion Cycle (CPOC)

Aaron McClung, Ph.D. Sr. Research Engineer aaron.mcclung@swri.org 210-522-2677

Initial Cycle: Cryogenic Pressurized Oxy-combustion (CPOC)

- Transcritical cycle (gas, liquid, and supercritical states)
- Leverage iso-thermal compression to minimize compression work
 POWER
 CO2 COMPRESSOR
 CO2 CRYO-PUMP
 CO2 CRYO-PUMP
 CO2
 CRYO-PUMP

Recuperated CPOC

Add high temperature recuperator after expander, low temperature recuperator after compressor

High temperature recuperator

- Hot stream: Turbine outlet
- Cold stream: Low temperature recuperator
- Assume 10 C pinch point

Low temperature recuperator

- Hot stream: Iso-thermal compressor outlet
- Cold stream: Dense phase pump

Assume 5 C pinch point

Performance tweaks

- Iso-thermal compressor
 - Reduce pressure ratio (Increases refrigeration requirements)
 - Assume 20% of adiabatic temperature rise
- Turbine inlet pressure between 145 and 175 bar
- Assume 5C of sub-cooling for refrigeration

Baseline Recompression Cycle

Efficiency Comparison

Recuperated CPOC performs on par with the recompression cycle, has larger thermal input window, higher power density, and requires less

recuperation	CPOC	Recompression
Efficiency	63.85%	64.00%
Turbine Inlet Temp (C)	1200	1200
Turbine Inlet Pressure (bar)	150	290
Turbine Outlet Pressure (bar)	1	100
Mass flow (kg/s)	1.00	1.00
W net (MW)	0.830	0.221
Q in (MW)	1.300	0.345
HX high (MW)	0.451	0.992
HX low (MW)	0.010	0.154
Total Recuperation (MW)	0.461	1.146

Scaled to 550 MWe plant, parasitic losses neglected						
	CPOC	Recompression				
Mass flow (kg/s)	662.65	2,488.69				
W net (MW)	550.00	550.00				
Q in (MW)	861.45	858.60				
HX high (MW)	298.86	2,468.78				
HX low (MW)	6.63	383.26				
Total Recuperation (MW)	305.48	2,852.04				

FUNDAMENTAL GAS PROPERTY TESTING

- Fundamental gas property tests for high H₂S and CO2 content mixtures, falling outside of typical EOS model limits: speed of sound, specific heat, and density up to 15,000 psi, 400°F.
- Adapted high pressure autoclaves / adiabatic calorimeters for specific heat determination.
- Specialized test methods for speed of sound using high pressure fixture design developed by SwRI.
- Gas sampling and species determination near critical point.
- Controlled long-term tests using for H₂S / CO₂ / water mixtures to characterize gas-liquid behavior.

Pressure Transducer

Gas Temperature Sensor

COMPRESSOR STATION DESIGN

- API 618 Standard Analyses: Pulsation, Mechanical and Thermal Analysis of Reciprocating Compressor Systems
- □ 1-D / 3-D Pulsation Analysis
- Simulation of piping components for design review: Regulators, check valves, process valves, heat exchanger components
- Larger pipeline system modeling and simulation: Pump / compressor optimization, Leak detection, MAOP Limit analysis
- □ Transient surge / Surge control
- Blow-down station analysis and Acoustic-Induced Vibration

DOE S-CO₂ Test Program

- Research compression loop
 - Turbomachinery performance
- Brayton cycle loop
 - Different configurations possible
 - Recuperation, Recompression, Reheat
 - Small-scale proof-of-technology plant
 - Small-scale components
 - Different than hardware for commercial scale

Barber Stockwell, Sandia National Laboratories,

DOE S-CO₂ Test Program Turbomachinery

Source: Wright (2011)

S-CO₂ Brayton Cycle Test Loop

Source: Wright (2011)

S-CO₂ Brayton Cycle Test Loop

Source: Wright (2011)

S-CO₂ Brayton Cycle with Regeneration

Source: Conboy et al. (2012)

177

S-CO₂ Brayton Cycle with Regeneration

178

S-CO₂ Brayton Cycle with Regen. + Recomp.

S-CO₂ Brayton Cycle Performance with Regeneration Config.

Source: Conboy et al. (2012)

DOE S-CO₂ Test Program Summary

- Major milestones
 - Test loops operational
 - Demonstrate process stability/control
- Areas for future development
 - Heat exchanger performance
 - Larger scale test bed
 - Utilize commercial-scale hardware
 - Demonstrate more-realistic (better) performance
 - CO₂ mixtures

Printed Circuit Heat Exchanger (PCHE)

S-CO₂ test loop used by Sandia/ Barber-Nicholls

Heatric PCHE

Le Pierres (2011)

Heat Exchanger Testing (Bechtel)

□ 150 kW
□ 8000 lbm/hr S-CO₂
□ 2500 psi

Nehrbauer (2011)

Tokyo Institute of Technology (TIT)

Supercritical CO₂ Cycle Mockup Test Loop

- 1. Compressor work reduction around the critical point,
 - 2. Pressure drop performance of new MCHE

(Kato et al., 2007)

TIT, New Micro-Channel Heat Exchanger

Zigzag Model

- Localized velocity profile
- Eddies around the corners

- "S" Shape Fin model
 - Uniform velocity profile

No eddies

(Kato et al., 2007)

TIT, Heat Exchanger Testing

(Kato et al., 2007)

HEATRIC (Zigzag Fins)

TIT, Heat Transfer Rate vs. Pressure Drop ΔP : about 1/6 35 (MW/m^3) $\checkmark \Delta P$: about 1/3> 30 20% 25 Heat Transfer Rate, 20

Sinous Curve

15

10

5

0

0

"S" Shape Fin

Louvered Fin

Zigzag

500

Corrosion Loop at Tokyo Institute of Technology

316 SS, 12% Cr alloy, 200-600°C, 10 Mpa CO₂, Kato et al. (2007)

Other S-CO₂ Corrosion Test Facilities

- □ MIT 650°C, 22 MPa
 - Steels
- □ UW 650°C, 27 MPa
 - Steels

Guoping (2009)

- French Alternative Energies and Atomic Energy Commission - 550°C, 25 MPa
 - Steels
- □ MDO Labs 54.4°C, 12.4 MPa
 - Elastomers, engineering plastics, rubbers, etc.

Geothermal Research

- Explore the feasibility of operating enhanced geothermal systems (EGS) with CO₂ as heat transmission fluid
- Collaboration between LBNL (Pruess), UC Berkeley (Glaser), Central Research Institute of the Electric Power Industry, Japan (Kaieda) and Kyoto University (Ueda)
 - UC Berkeley: laboratory testing of CO₂ heat extraction
 - Japan: inject brine-CO₂ mixtures into Ogachi HDR site (T \approx 210°C, P \approx 100 bar)
 - LBNL: model reactive chemistry induced by brine-CO₂ injection

S-CO₂ Critical Flow (Univ. Wisconsin)

Blowdown Facility Description (Pictures)

•Shadowgraphy set up using a fast frame camera to observe the shocks structure at the exit of the nozzles

•Some tests were conducted with a target plate located in front of the jet to measure the reaction force

View of the opening systems

4/21/2009

S-CO₂ High Pressure Compression (Dresser-Rand)

Tupi - I

Tupi - III

(GT2012-70137)

Future Trends for S-CO₂ Power Cycles

Future trends and research needs

Intermediate-scale is needed to demonstrate commercial viability of fullscale technologies (i.e. 10 Mwe)

Materials

Long term corrosion testing (10,000 hrs)
Corrosion of diffusion-bonded materials (PCHE HX)
Coatings to limit/delay corrosion
Corrosion tests under stress

Heat Exchangers

Improved heat transfer correlations near the critical region for varying geometries
Improve resolution of local heat transfer measurements
Heat exchanger durability – studying effects of material, fabrication, channel geometry, fouling, corrosion, and maintenance

Rotordynamics

□Analysis of rotor-dynamic cross-coupling coefficients for S-CO₂

Pulsation analysis

Development of transient pipe flow analysis models for S-CO₂

Future trends and research needs

Control System and Simulation

Detailed models of turbo machinery
Improved transient analysis – surge, shutdown events

Fluid properties

□Mixture of S-CO₂ and other fluids □Physical property testing of CO₂ mixtures at extreme conditions with significantly reduced uncertainties (i.e. \leq 1%)

Summary

Both supercritical power cycles and the use of S-CO₂ are not new concepts

S-CO₂ is used in a variety of industries as a solvent

S-CO₂ power cycles can be applied to many heat sources and have a small footprint

The near ambient critical temperature of CO₂ allows it to be matched with a variety of thermal heat sources

The combination of favorable property variation and high fluid density of S-CO₂ allows small footprint of machinery

The near future goal is to improve understanding and develop commercial-scale power

International S-CO₂ power cycle research is ongoing

Power production test loopsMaterials corrosion test facilitiesMachinery component test loopsFluid property testing

More research is needed S-CO₂ power cycle applications

- Intermediate scale (10MW) demonstration
- Materials testing at high temperature, pressure and stress
- Property testing with S-CO₂ mixtures
- Rotordynamics with S-CO₂
- S-CO₂ heat transfer and heat exchangers

More detailed dynamic simulation and control systems

Questions?