UNCERTAINTY ON PERFORMANCE MEASUREMENT OF S-CO₂ COMPRESSOR OPERATING NEAR THE CRITICAL POINT

The 4th International Symposium - Supercritical CO₂ Power Cycles September 9-10, 2014, Pittsburgh, Pennsylvania

Jekyoung Lee^a, Seong Gu Kim^a, Jeong Ik Lee^a, Jae Eun Cha^b ^a Korea Advanced Institute of Science and Technology ^b Korea Atomic Energy Research Institute

CONTENTS

Uncertainty analysis

Ī

Ι

Summary and further works

S-CO₂ Brayton cycle development in KAIST research team

S-CO₂ Pressurization Experiment (SCO2PE, constructed in KAIST)

- Components
 - 1. Overview
 - 2. Impeller
 - 3. Main compressor
 - 4. Pre-cooler
 - 5. Booster pump
 - 6. Vacuum pump

- Sensors
 - PT100 Ohm RTDs
 - Static temperature
 - Rosemount 3051S Pressure Transmitter
 - Static pressure
 - Rheonik RHM20 mass flow meter

Accuracy

,					
Sensor type	Accuracy				
RTD	±0.2°C				
Pressure transmitter	±0.09%				
Mass flow meter	±0.16%				
RPM	±0.1%				
Power	±0.5kW				

Main compressor description

- Canned motor pump
 - ✓ 26kW motor driver
 - Sleeve journal bearing with working fluid lubrication
 - Closed(shrouded) type impeller
 - Recirculation flow exists
 - Water jacket is equipped to maintain integrity of sleeve bearing
 - Available RPM: 4620(77Hz)

Main compressor design conditions						
Inlet pressure, MPa	7.9993					
Outlet pressure, MPa	9.4692					
Pressure ratio	1.18					
RPM	4428					
Mass flow rate, kg/s	4.49					

Dimensions of mechanical parts							
Impeller type	Closed						
Impeller diameter, mm	234						
Journal bearing type	Sleeve						
Thrust bearing type	Plain						
Material	SUS316						

- SCO2PE operation purpose. 1
 - Experience to CO₂ pressurization with various fluid conditions

SCO2PE operation purpose. 2

- V&V of KAIST_TMD
 - Turbomachinery in-house code
- > SCO2PE operation purpose. 3
 - V&V of KAIST_HXD
 - ✓ Heat exchanger in-house code

6

Korea Advanced Institute of

Science and Technology

> Compressor performance variable

Pressure ratio

$$\checkmark PR = \frac{P_{out}}{P_{in}}$$

Isentropic efficiency

✓ 1:
$$\eta = \frac{h_{out,ideal} - h_{in}}{h_{out} - h_{in}}$$

✓ 2:
$$\eta = (h_{o,out,isen} - h_{o,in}) \frac{\dot{m}}{\dot{W}}$$

Nomenclature
<i>PR</i> : pressure ratio
η : efficiency
<i>h</i> : enthalpy
\dot{m} : mass flow rate
\dot{W} : input power
U: impeller tip speed
<i>in</i> : compressor inlet
out : compressor outlet
isen: isentropic process
o: stagnation
<i>th</i> : theoretical (Euler equation)
loss: loss in compressor
int : internal loss
<i>ext</i> : external loss

Uncertainty analysis \succ

Relative(fractional) uncertainty [2] •••

$$\checkmark \frac{\omega_f}{f} = \left\{ \sum \left[\left(\frac{1}{f} \frac{\partial f}{\partial x_i} \boldsymbol{\varpi}_{x_i} \right)^2 \right] \right\}^{1/2}$$

Pressure ratio ٠.

$$\checkmark \quad \frac{\omega_{PR_o}}{PR_o} = \left[\left(\frac{\omega_{P_{o,out}}}{P_{o,out}} \right)^2 + \left(\frac{\omega_{P_{o,in}}}{P_{o,in}} \right)^2 \right]^{1/2}$$

Isantronic efficiency •

Nomenclature *h*: enthalpy \dot{m} : mass flow rate \dot{W} : input power U_2 : impeller tip speed in: compressor inlet *out* : compressor outlet isen: isentropic process *o*: stagnation

 ω : uncertainty

$$= \left[\left(\frac{1}{h_{o,out,isen} - h_{o,in}} \omega_{h_{o,isen}} \right)^{2} + 2 \left(\frac{h_{o,out,isen} - h_{o,out}}{(h_{o,out,isen} - h_{o,in})} \omega_{h_{o,in}} \right)^{2} + \left(\frac{(-1)}{h_{o,out} - h_{o,in}} \omega_{h_{o,out}} \right)^{2} \right]^{1/2}$$

$$= \left[\left(\frac{1}{h_{o,out,isen} - h_{o,in}} \omega_{h_{o,out,isen}} \right)^{2} + \left(\frac{-1}{h_{o,out,isen} - h_{o,in}} \omega_{h_{o,in}} \right)^{2} + \left(\frac{-1}{\dot{w}} \omega_{\dot{w}} \right)^{2} \right]^{1/2}$$

$$= \left[\left(\frac{2}{U_{2}} \omega_{U_{2}} \right)^{2} + \left(\frac{1}{\dot{m}} \omega_{\dot{m}} \right)^{2} + \left(\frac{-1}{\dot{w}} \omega_{\dot{w}} \right)^{2} \right]^{1/2}$$

[2] Holman, J. P., 2001, Experimental Methods for Engineers, McGraw-Hill, New York, NY, USA

Data cases

N

	Case 1, 83 bar, 40°C, above the critical operation							Case 2, 74.4 bar, 32.5°C, near the critical operation						
	Mass flow rate (kg/s)	Inlet P (kPa)	Outlet P (kPa)	Inlet T (°C)	Outlet T (°C)	RPM		Mass flow rate (kg/s)	Inlet P (kPa)	Outlet P (kPa)	Inlet T (°C)	Outlet T (°C)	RPM	
leasured data	2.001	8294.7	9119.3	39.869	45.775	4620		2.863	7443.5	8649.5	32.550	38.251	4620	
	1.519	8295.1	9111.1	39.876	45.906	4620	Measured data	1.986	7440.0	8658.0	32.502	38.232	4620	
	0.955	8291.4	9064.6	39.894	46.070	4620		1.545	7444.9	8650.3	32.504	38.196	4620	
	0.502	8296.8	9025.0	39.835	46.689	4620		0.998	7447.9	8633.6	32.446	38.161	4620	

9

KAIST

The 4th International Symposium - Supercritical CO2 Power Cycles

Uncertainty calculation results

Korea Advanced Institute of

Science and Technology

NPNP

Issue 1 \geq

- Peak region on property variation of S-CO₂ near the critical point causes high uncertainty on efficiency measurement
 - ✓ Inherent characteristic of S-CO₂ near the critical point
 - Strong correlation with specific heat and measurement uncertainties

Korea Advanced Institute of

Issue 3

Applying of density measurement at compressor inlet and outlet reduces uncertainty on efficiency measurement [1].

The 4th International Symposium - Supercritical CO2 Power Cycles

Korea Advanced Institute of NPNP

Science and Technology

Issue 4

- Approximation on efficiency calculation is necessary for low pressure ratio S-CO₂ compressor with near the critical operation condition
 - Due to uncertainty of enthalpy terms on efficiency calculation equations, high uncertainty always involves when S-CO₂ compressor inlet condition is near the critical point
 - ✓ Approximation on efficiency calculation for main compressor of SCO2PE

$$\eta = \frac{\Delta h_{th} - \Delta h_{loss,int}}{\Delta h_{th} + \Delta h_{loss,ext}} \approx \frac{\Delta h_{th}}{\Delta h_{th} + \Delta h_{loss,ext}} = \frac{U_2^{-2}\dot{m}}{\dot{W}} \quad \text{(where, } \Delta h_{loss,ext} >> \Delta_{loss,int}\text{)}$$

$$\frac{\omega_{\eta}}{\eta} = \left[\left(\frac{2}{U_2}\omega_{U_2}\right)^2 + \left(\frac{1}{\dot{m}}\omega_{\dot{m}}\right)^2 + \left(\frac{-1}{\dot{W}}\omega_{\dot{W}}\right)^2 \right]^{1/2} \approx 0.006$$
Recirculation
(High pressure)
Basis
$$- \text{ low specific speed design}$$

$$- \text{ Some portion of high(discharge) pressure S-CO_2 recirculates through shaft}$$

- Thus, it is fair assumption that external losses are greater than internal losses

It doesn't represent actual isentropic efficiency of machinery.
 However, it can be utilized for the base data for operation with low uncertainty

Science and Technology

Summary and further works

- Issues on uncertainty on efficiency measurement of near the critical operation S-CO₂ \geq compressor
 - \star 1. Peak region on property variation of S-CO₂ near the critical point causes high uncertainty on efficiency measurement
 - ✓ Inherent characteristics of S-CO₂ near the critical point
 - 2. Performance measurement on low isentropic enthalpy rise (which is related with pressure ratio) compressor has high uncertainty on efficiency measurement
 - ✓ Machine dependency
 - ✓ At 2.7 pressure ratio, this issue will be mitigated with under 0.1 of relative uncertainty.
 - 3. Applying of density measurement at compressor inlet and outlet reduces uncertainty on efficiency measurement [1].
 - ✓ It is true that it increases measurement confidence. However it doesn't provide remarkable improvement for low pressure ratio S-CO₂ compressor.
 - \diamond 4. Approximation on efficiency calculation is necessary for low pressure ratio S-CO₂ compressor with near the critical operation condition
 - ✓ Just for SCO2PE compressor which has relatively high external losses
 - ✓ It doesn't represent actual efficiency but it can be used for performance indicator for operation with low uncertainty

Summary and further works

Further works

- Uncertainty analysis for the compressor of S-CO₂ Integral Experiment Loop (SCIEL)
 - ✓ Construction field : Korea Atomic Energy Research Institute (KAERI)
 - ✓ 2014 construction : Simple cycle demonstration

analysis on each loss model will be carried out to make better approximation on performance measurement.

THANK YOU

