FILM RIDING LEAF SEALS FOR IMPROVED SHAFT SEALING

Authors - Clayton M. Grondahl and James C. Dudley.

Presented at ASME Turbo Expo 2010

Power for Land, Sea and Air

June 14-18, 2010, Glasgow, UK.

ASME GT2010-23629

CMG Tech, LLC

29 Stony Brook Drive Rexford, NY 12148

Seal operating environment and need for a film riding seal:

B. Axial view showing asymmetric seal clearance variation

Pressure Actuated Leaf Seal structure incorporated in FRPALS.

Rexford, NY

Basic PALS passive closure.

Pressure Actuated Leaf Seal (PALS) test seal and leakage:

Rexford, NY

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Isometric view.

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Section view.

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Function.

• P1 > P2

- Leaves deflected from support.
- Runners ride on hydrostatic / hydrodynamic film.

Rub avoidance: Non-contacting clearance

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Components.

Seal application for hydrodynamic-hydrostatic analysis:

Rotor seal diameter	60.0 in.	1.52 m	
Runner segment angle	18.0 deg.	0.314 rad	
Temperature	1000 F	538 K	
Speed	3600 RPM	3600 RPM	
Ambient pressure	50.0 psig	345 kPa	
Pressure differential	40.0 psi	276 kPa	

Seal analysis goals: < 2 lbs/sec (0.91 kg/s) seal leakage, rotor centered. + / - 0.100 inches rotor eccentricity. < 50°F (28°C) temperature rise.

Film analysis by Wilbur Shapiro using NASA Industrial code GCYLT.

Seal film geometry selected to meet performance goals:

Runner axial length	1.500 inch	38.1 mm	
Inlet Rayleigh step height	0.010 inch .	0.254 mm	
Inlet Rayleigh step length	0.300 inch	7.62 mm	
Runner inside radius	30.100 inch	0.76454 m	

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Film analysis.

Evaluation studies:	Hydrodynamic contribution at 3600 RPM vs 0 RPM	Operating temperature of 1000F vs RT	
Lifting force	No significant change	No significant change	
Leakage	~10% less at 0 RPM.	~ 200% increase at RT	

Additional film analysis calculations:

- cross coupled stiffness and damping coefficients,
- power loss and
- center of film force.

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Force analysis.

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Clearance vs Eccentricity.

FILM RIDING PRESSURE ACTUATED LEAF SEALS : Clearance vs Eccentricity.

Design analysis results:

- 1. Practical seal runner geometry: adequate hydrostatic load capacity.
- 2. Static seal leaf and hydrostatic film force analysis:
 - Reduced seal leakage at 0.010 inch nominal clearance.
 - Non-contacting at rotor eccentricity of 0.100 inches.
 - Compliant seal clearance vs. rotor eccentricity:

Eccentricity, inches	- 0.100	0.000	+0.100
Seal clearance, inches	0.017	0.010	0.003

Seal Development Plans:

- 1. Full-scale 2-D static test:
 - Confirm 2-D seal leaf actuation and runner translation with pressure.
 - Measure clearance over range of 'eccentricities'.
 - Measure runner film pressure vs. axial position.
 - Measure seal leakage.
 - Acoustic monitoring for dynamic activity.
 - Validate predictive seal design tools & methodology.
- 2. Full-scale 3-D segment static test:
 - Confirm 3-D seal actuation and runner translation with pressure.
 - Measure clearance over range of 'eccentricities'.
 - Measure seal leakage.
 - Measure dynamic activity
 - <u>Demonstrate 3-D seal operability and reduced leakage.</u>
- 3. Sub-scale rotating rig seal testing:
 - Measure multi-segment leakage.
 - <u>Evaluate dynamic performance.</u>

2-D Test Rig Sketch to Measure FRPALS Runner Pressure Distribution.

2-D Test Rig For Film Riding PALS Runner Pressure Distribution Measurement.

Bench test – arrangement of 2-D FRPALS modification, pressure transducers, flow meter (background) and NI USB data acquisition with NI Signal Express software.

A closer look at 2-D FRPALS tapered slide to lift the runner, translation screws and pressure transducers.

Bench Test Comparison with GCYLT

Design evaluation conclusions:

- Feasibility established.
- Continue development.

