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Ken Kimball has been actively involved with supercritical CO2 Brayton power cycle
development since 2005 working at the Knolls Atomic Power Laboratory in
Schenectady, NY, USA. This effort has included working closely with numerous
University, National Laboratory and Industry groups. He has a BS degree in mechanical
engineering from Worcester Polytechnic Institute and an MS degree in mechanical
engineering from Rensselaer Polytechnic Institute. He has previously presented
development progress at the Supercritical CO2 Brayton power cycle development
symposiums in 2009 and 2011 and the ASME Turbo Conferences in 2012 and 2013.

Supercritical CO, Power Cycles Symposium september 9-10, 2014 Page 1



Abstract

Bechtel Marine Propulsion Corporation (BMPC) is testing a supercritical carbon
dioxide (S-CO,) Brayton system at the Bettis Atomic Power Laboratory. The 100
kWe Integrated System Test (IST) is a two shaft recuperated closed Brayton cycle
with a variable speed turbine driven compressor and a constant speed turbine
driven generator using S-CO, as the working fluid. The IST was designed to
demonstrate operational, control and performance characteristics of an S-CO,
Brayton power cycle over a wide range of conditions. The IST design includes a
comprehensive instrumentation and control system to facilitate precise control of
loop operations and to allow detailed evaluation of component and system
performance. A detailed dynamic performance model is being used to predict IST
performance, support test procedure development and to evaluate test results.

An overview of IST testing progress and plans is provided. Testing in the IST was
initiated in 2012. Test operations to date included successful system startup, initial
transition to electrical power generation, increased power operations and transition
to load control testing using independent speed control of the turbo-machinery.
Results of testing completed to date and future testing plans will be summarized.

Supercritical CO, Power Cycles Symposium september 9-10, 2014 Page 2



Bechtel Marine Propulsion Corporation
Knolls Atomic Power Laboratory
Schenectady, NY

Bettis Atomic Power Laboratory

West Mifflin, PA

Supercritical Carbon Dioxide Power Cycle
Development Overview

KJ Kimball
Bechtel Marine Propulsion Corporation

September 10, 2014

Supercritical CO, Power Cycles Symposium september 9-10, 2014 Page 3



BMPC Development Program Overview:

— S-CO, Brayton Cycle Integrated Systems Test (IST)
« Turbo-machinery (turbine, compressor, bearings, seals)
« Control system (startup, power control)
« Heat exchangers (shell and tube)

 Practical considerations (mass control, instrumentation,
system leakage)

— Compact Heat Exchanger Development

» High pressure, compact, fatigue resistant, affordable
— MW scale development vision

« Based on kW development

« Scale-up issues

« Transition from experimental to demonstration stage
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IST Physical Layout
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IST Turbomachinery

Compressor/Diffuser Turbine
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Maximum Power Operation
November 2013 — 40kWe
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Compressor Map
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Power Increase Transient

* |nitial Conditions: Hot Idle (540°F/37,500 rpm)

TG speed increased

 TCspeed increased in steps

 Compressor recirculation valve decreased in steps

 Water flow automatically controlled to maintain compressor inlet T
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Power Increase Transient:
Heat Exchanger Heat Duties
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IHX Heat Transfer
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Precooler Heat Transfer
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a‘@ﬁ’ Practical Aspects of Supercritical Carbon Dioxide Brayton System Testing

E. M. Clementoni & T. L. Cox, Bechtel Marine Propulsion Corporation

=4 Operational Experience

e 100 kWe Integrated System Test
» Shakedown started Fall 2011

e Over 165 hours of Brayton system
: 'I operation

~' * Achieved 40% of design power

Design Considerations A \
« Off-design/transientmodel valuable ~ ~— s@#d =~
for startup & low power operation o3
* Good experience with Grayloc &
Swagelok fittings and ANSI flanges
* Thermal stresses need considered
early for compact arrangement

Loop Cleanliness

System Fill and Leakage

* |IST uses Coleman Instrument grade
(99.99%) CO, for fill

 Three cycles of pulling vacuum and
filling to atmospheric pressure
before full fill

* Low leakage levels from valve stem
packing and large shaft seals

* S-CO,isagreatsolvent B §1° " =cd S Instrumentation

* Material quality and cleanliness e  Marlin Type T SLE thermocouples
controls are important i* * Rosemount pressure transducers

* EPDMacceptable, VitonandTeflon : .|\ . MicroMotion Elite Coriolis meters
tape problematic PRI -« REFPROP calculated density (T&P)

* Turbine nozzle erosion believed to be -

agrees well with measured density
caused by debris in system ew § TR W

Supercritical CO, Power Cycles Symposium september 9-10, 2014 Page 15



IST with Recompression Cycle Control Features

IHX (Hot Qil to CO,)
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This loop design shows how recompression control features could be placed in the IST, allowing loop
hydraulic control for startup, heatup and low power operation.
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Using end states that have been optimized for adequate surge margin this up-power transient shows
good performance, with minimal under/over shoot.
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Up-power rates >1%/s would be possible for a well designed recompression loop.
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S-CO, Heat Exchanger Development
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Recuperator Designs Tested

WavyFin Wire Mesh
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Folded Wavy-Fin Results
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Summary of Progress to Date
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S-CO, Integrated System Testing

* |ST demonstrating controllability of a two shaft
simple S-CO2 Brayton cycle

* Normal power operation over range of power
levels up to ~50 kWe has commenced

 TRACE transient modeling:
— Validation has commenced

— Approaching real time execution
— Demonstrates controllability of re-compression cycle
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S-CO, Heat Exchanger
Development

* |ST heat exchangers meeting expectations and
validating performance models

* More compact/fatigue resistant heat exchangers
being designed, fabricated and tested in
dedicated 300kW test facility
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MW Scale Development
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$-CO, Power Cycle Development Approach

Concept
Development

Small Scale System and Large Component Large Scale System
Component Tests Development Test

Fundamental Testing

Turbomachinery
Performance
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Plant Concept Technology
Development Assessment
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" :small System
Test

Power Plant Concept
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Path to S-CO, Power Cycle Commercial Implementation

Component Development -

kW scale

SunShot
MW scale

GE

Materials Development _

Engineering Design - Analysis Codes - Component Specifications

Bearings & Seals

Turbomachinery Thermal Coatings Internal cooling
Controls

Heat Exchangers

Chemistry Control

Test loop component development - heater

Technology
Development

Current Time
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