

Recent Developments in S-CO₂ Cycle Dynamic Modeling and Analysis at ANL

Anton Moisseytsev and Jim Sienicki Argonne National Laboratory, USA

The 4th International Symposium - Supercritical CO₂ Power Cycles Pittsburgh, PA September 9-10, 2014

Contents

- The presentation provides an update on recent analyses of the S-CO₂ Brayton cycle at ANL
 - Since the last S-CO₂ Symposium in 2011
 - The majority of the results has been already presented at various conferences
- The analysis presented is this paper has been carried out using the Plant Dynamics Code (PDC) developed at ANL
 - Most of the S-CO₂ cycle control analysis carried out at ANL and presented here has been done in application of the cycle as an energy converter for Sodium-Cooled Fast Reactors (SFRs)
- Recent Progress
 - Coupling of the PDC with the SAS4A/SASSYS-1 code
 - Dynamic simulation and control of the S-CO₂ cycle
 - S-CO₂ cycle control with active reactor control
 - ANL Plant Dynamics Code validation

ANL Plant Dynamics Code (PDC)

- Specifically developed for analysis of S-CO₂ cycle
 - One-dimensional system level transient analysis code
 - Targets the specific features of the cycle
 - Operation close to the critical point
 - Recompression cycle (if needed)
 - Real CO₂ properties
 - Properties variation in HX's and turbomachinery
 - No ideal gas assumptions
 - Compressibility effects
- Incorporates S-CO₂ cycle control mechanisms and logic
- Incorporates steady-state design code to determine cycle initial conditions
- Integrated "semi-automatic" turbomachinery design
 - Design and performance subroutines for both turbine and compressor
- Fast solution scheme runs efficiently on a PC
 - Taylor series
 - Almost real time (for slow transients)

Coupling of the PDC with the SAS4A/SASSYS-1 Code

SAS4A/SASSYS-1 Code

- Developed by Argonne National Laboratory
- Leading capability for analysis of liquid-metal-cooled reactors at system level
 - Primary use: safety analysis
- Incorporates detailed reactor as well as primary and intermediate loop thermal hydraulics
 - Forced and natural circulation, pump models, heat exchangers
- Reactivity coefficients specific to fast reactors
 - Core axial and radial expansions, control rod expansion, coolant density, etc.
 - Radial-, axial-, and temperature-dependent distributions in transients
- Includes balance-of-plant model
 - Currently limited to steam cycles
- Coupling PDC with SAS4A/SASSYS-1 would combine analysis capabilities for the reactor and S-CO₂ BOP
 - Covering the entire plant

Coupling PDC with SAS4A/SASSYS-1 code

- Coupling PDC with SAS4A/SASSYS-1 would combine analysis capabilities for the reactor and S-CO₂ BOP
 - Covering the entire plant
- However, the access to SAS4A/SASSYS-1 source code is restricted (Export Controlled)
 - Previously, the two codes were run separately with iterative update of input files
- New coupling scheme uses SAS4A/SASSYS-1 PC executable file
 - Does not require access to the SAS4A/SASSYS-1 source code
 - Utilizes Fortran capabilities to work with EXE files
 - Takes advantage of SAS4A/SASSYS-1 restart capability
- The data transfer between PDC and SAS4A/SASSYS-1
 - Occurs at each SAS4A/SASSYS-1 time step
 - Is done by reading SAS4A/SASSYS-1 output files and writing input files
 - Involves intermediate sodium conditions at RHX inlet and outlet

PDC-SAS4A/SASSYS-1 Coupling

- New coupling scheme uses SAS4A/SASSYS-1 PC executable file
 - Does not require access to the SAS4A/SASSYS-1 source code
 - Utilizes Fortran capabilities to work with EXE files
 - Takes advantage of SAS4A/SASSYS-1 restart capability
 - Could be applied to other heat source codes
- The data transfer between PDC and SAS4A/SASSYS-1
 - Occurs at each SAS4A/SASSYS-1 time step
 - Is done by reading SAS4A/SASSYS-1 output files and writing input files
 - Involves intermediate sodium conditions at RHX inlet and outlet

Dynamic Simulation and Control of the S-CO₂ Cycle

S-CO₂ Cycle Control Analyses

Load Following

- Goal: to show that the cycle can be controlled to change power level
- Investigate and optimize control mechanisms
- Decay heat removal
 - Goal: demonstrate that the cycle can be used in low power regime
 - Investigate and optimize control mechanisms

S-CO₂ Cycle Control

- Included into transient PDC equations
- Relies on combination of control mechanism
 - Turbine bypass [17]
 - Fastest power control (on pressure and flow)
 - Least efficient
 - Inventory control [18]
 - The most efficient (preserves TM velocity triangles for ideal gas)
 - Slow (introduce disturbance to compressor conditions)
 - Limited by tank volume
 - Decreases compressor surge margin
 - Turbine throttling [16]
 - More efficient than TBP, but less efficient than INV
 - Introduces an extra pressure rise with valve closing (not good for full pressure)
 - Cooler bypass [19]
 - Cooling water flow rate [14]
 - Compressor surge control

S-CO₂ Cycle Control: Control Strategy

- Use inventory control when possible
 - Subject to storage tank volume limitation
- Turbine throttling
 - Outside INV range
- Turbine bypass for small load changes and fine-tuning
- Minimum temperature control
 - Always
- Shaft speed control
 - For decay heat removal
 - After disconnection from the grid
- Compressor surge control
 - When needed
 - Low power

Demonstration of S-CO₂ Cycle Control with PDC

- Simulation in two stages
 - First stage: Load following from 100% down to 0%
 - Second Stage: Transition to decay heat removal

First Stage

- The electrical grid demand was set to reduce linearly at 5%/min rate from 100% to 0%
 - 1,200 s transient time
 - The only external input
- S-CO₂ cycle automatic controls adjust the conditions on the BOP side to maintain balance between the net generator output and the grid demand
- Autonomous reactor operation is assumed
 - Sodium-cooled fast reactor (ABR-1000)
 - No reactor power control by control rods
 - Only rely on reactivity feedbacks
 - No control of primary and intermediate pumps

Results of Transient Simulations: Load Following

- Grid demand decreases linearly to 0 (external input)
- Net generator output follows the grid demand very closely
 - Achieved by control actions on S-CO₂ side

Results of Transient Simulations: Load Following

- Reduced heat removal by CO₂ affects the temperatures on the sodium side of Na-CO₂ HX
 - Sodium inlet temperature is defined by heat balance on the reactor side
- On the reactor side, changing intermediate and then primary loop temperatures introduce reactivity to the core

Results of Transient Simulations: Load Following

- The net effect of reactivity feedbacks is reduction of reactor power
 - Which closely follows the heat removal by CO₂ side
 - Even without active reactor power control
- The peak reactor temperatures stay below the nominal values
 - Result of strong negative reactivity feedbacks of ABR-1000 SFR core

Transition to the Decay Heat Removal Mode

- Goal: find S-CO₂ cycle control which would allow plant operation at low reactor power
 - 6% or less
- Simulation was continued after the generator power reached 0% level
 - Same transient, Stage 2 starts at 1,200 s
- Generator is assumed to be disconnected from the grid
 - Zero grid demand
 - Ideally, the control system would maintain zero net generator output
 - If there is enough reserve power in turbine to drive the compressors
 - Turbomachinery shaft speed is assumed to reduce linearly to 20%
- No other changes in external input
 - Still autonomous reactor operation
- Minimum temperature control is no longer required to maintain minimum temperature at design point
 - As long as the temperature stays above the critical value

Results of Transient Simulations: Transition to Decay Heat

- Slowing down shaft reduces both turbine and compressors work
 - Still, turbine provides sufficient power to drive the compressors
 - Zero net generator output is maintained
- The automatic cycle control maintains zero generator power
- VALVES CONTROL ACTION TURBINE AND COMPRESSORS WORK AND GENERATOR OUTPUT 10% 100 W, FRACTION OF NOMINAL GENERATOR POWER **9**% 90 W Turb 8% 80 W Comp1 % f INViv W Comp2 7% VALVE OPEN FLOW AREA, 70 -W gen Δ f_INVov 6% -W grid \diamond 60 f TINv 5% -f C20v 50 4% 40 3% 30 2% 20 1% 10 0% 0 -1% 1800 2100 2400 2700 1200 1500 1500 1800 2100 2400 2700 1200 TIME, s TIME, s
- To match zero load demand

Results of Transient Simulations: Transition to Decay Heat

- Compressor surge/stall approach is detected at about 2,100 s
 - Triggering surge control flow
 - Still, the flow is not too high to increase the compressor work significantly

Results of Transient Simulations: Transition to Decay Heat

- Temperatures above the critical point are maintained
 - Even with disabled cooler bypass control
- The heat removal rate by the cycle reduces to about 3% nominal

S-CO₂ Cycle Control with Active Reactor Control

Active Reactor Control in PDC-SAS4A/SASSYS-1 Codes

- In load following transients, the changes start on BOP side
 - E.g., turbine bypass valve opening in response to reducing grid load
 - Reactor "sees" changes through CO₂ heat removal variation (reduction) in the intermediate sodium-to-CO₂ reactor heat exchanger (RHX) 6
- To maintain intermediate sodium temperatures, sodium flow rate needs to be adjusted (reduced)
 - IHTS pump control 5
- This will affect IHX temperatures 3
 - Primary pump control
- With changed (low) primary coolant flow, reactor power needs to be changed
 - To maintain core-outlet temperature
 - By means of the control rod movements 2

Reactor Control Logic

Controllable Parameter	Measured Value	Controlled By	Control
Intermediate loop cold-	RHX-outlet Na	Intermediate sodium	Intermediate sodium
side temperatures	temperature	flow rate	pump torque
Primary loop cold-side	IHX-outlet primary Na	Primary sodium flow	Primary sodium
temperatures	temperature	rate	pump torque
Hot-side temperatures	Core-average outlet temperature	Core power (reactivity)	External core reactivity

- Active reactor control logic was implemented in the PDC
 - Control action is communicated to SAS4A/SASSYS-1
- In ideal world, the temperatures will be maintained at steady-state levels everywhere
 - Power/flow=1
- In reality, system delays (and other limitations) will prevent that
 - Are there S-CO₂ cycle limitations?

Results of Active Reactor Control (40% linear load reduction)

- Active control showed better results
 - Less temperature variation
 - Better power-to-flow ratio
 - Higher cycle efficiency
- However, these results were obtained for only 40% load reduction
 - What happens below 60% load?

CO₂ Temperature at RHX Inlet

- In highly-recuperated S-CO₂ cycle, RHXinlet temperature is defined by HTR performance
- When flow rate increases, heat transfer in HTR is reduced, RHX-inlet temperature ↓
 - During turbine bypass
 - 0-120 s
- With decreasing flow rate, RHX-inlet temperature ↑
 - With inventory control
- When CO₂ temperature at RHX cold end reaches steady-state value for sodium temperature, ability to maintain that temperature is lost

CO₂ Temperature at RHX Inlet

- Several approaches to control the temperature (prevent from increasing) were investigated
 - Reduced inventory control action
 - Recuperator bypass
 - Relaxed sodium temperature requirements
 - Reduced core-outlet temperature
- Control on S-CO₂ cycle side resulted in too low cycle efficiency
 - Plus, there are additional limits
- Results with relaxed temperature limits are acceptable
 - If high structure temperatures (say, 400 °C) can be tolerated
- Reduced core-outlet temperature is recommended as a preferred option
 - All temperature limits are satisfied
 - There are short-term effects
 - Cycle efficiency drop from lower turbine-inlet temperature is not significant

ANL Plant Dynamics Code Validation

ANL Plant Dynamics Code V&V History

- S-CO₂ cycle has never been commercially operated
- Earlier V&V was limited to benchmark calculations against similar codes elsewhere
- Later, limited code validation on individual components
 - Heat exchangers (PCHE test loop at ANL)
 - Turbomachinery (Ideal gas loop at SNL)
 - Small-scale S-CO₂ compressor test loop at Barber-Nichols Inc.
- Recently, Barber-Nichols, Inc. (BNI) and Sandia National Labs (SNL) constructed and operated small-scale closed split-flow S-CO₂ cycle loop
 - SNL Loop will provide a configuration for PDC testing and validation of modeling
 - CO₂ working fluid
 - Equipment designed to operate close to the critical point
 - Recompression cycle configuration
 - Recent PDC validation effort is focused on simulating the SNL Loop and data

July 14, 2011 SNL Loop Setup

- Single TAC
- Two recuperators
 - HTR is "overdesigned" for this setup -> very little, if any, heat transfer in LTR
 - Only HTR is simulated in the PDC
- 4 heaters
 - 390 kW input limit at BNI facility

SNL Loop Data and Modeling

- Some specifics of the experimental setup (for model validation purposes) were identified
 - Significant heat loss in pipes and in turbine
 - The heat loss in turbine volute is not measured
 - The loop could not be run for a long time to achieve "perfect" heat balance
 - Required for steady-state initialization in the PDC
 - Lack of information on PCHE internal configuration
 - No water flow rate measurements
 - Temperature measurement uncertainty (1.1 °C) is significant
- Some features were dealt with modeling assumptions

Transient Simulation: Assumptions

- The LTR was excluded from the PDC model
- The electrical heaters are simulated with shell-and-tube heat exchangers
 - Sodium flow on the hot side for the steady-state model
 - Direct heat input into the HX "tubes" in transients
- All of the heat losses in the system were simulated to occur in the HTR-heater pipe
 - Including turbomachinery heat loss
 - The amount of the heat loss was determined to achieve a heat balance throughout the system at steady-state conditions
 - In a transient, the heat loss is scaled with the changing CO₂ temperatures in the pipe
- Other than the heat loss, no heat transfer is simulated in the pipes in the PDC
 - Also includes the absence of heat exchange between the CO_2 and the pipe walls
- The TAC drain flow is not included into the PDC steady-state and transient models

Steady-State Calculations

- Good agreement was achieved for steady-state
 - Required significant heat loss simulation (19 kW) at heater inlet
 - Simulates **all** heat losses in the cycle
 - Also compensates for not achieving perfect heat balance in HTR by 3356 s
 - Skipping LTR did not affect temperatures much

Dynamic Simulation of SNL S-CO₂ Loop with the PDC

Transient is defined by the experimental data through the external input:

Initial conditions: "steady-state" at 3356 s

Transient Results Presentation

- Compare all available experimental measurements with the corresponding PDC predictions
 - Temperatures, pressures, density, flow rates
- The following slides show such comparisons for each individual parameter

- Few results are presented here
 - Differences are briefly discussed
 - See the paper for more detailed comparison

- Heater outlet temperature is predicted very accurately
 - Results of the automatic control
 - Short-term behavior is achieved by control's PID coefficients optimization (2)
 - In some cases, there is not enough reserve capacity in the heater (3)
 - Discussed below
- Turbine inlet temperature is very close to the heater outlet
 - There is, however, a somewhat noticeable time delay in the experimental data (4)

• Not showing in the PDC - result of not simulating pipe heat capacity

"Recent Developments in S-CO2 Cycle Dynamic Modeling and Analysis at ANL" by A. Moisseytsev, 4th S-CO2 Symposium, Pittsburgh, PA, September 9-10, 2014

T600

-PDC

- Turbine outlet temperature is predicted accurately earlier in the transient (1)
 - But diverges with higher turbine speed (2)
 - Overprediction of turbine performance at higher speeds
- HTR hot side outlet temperature is slightly overpredicted by the PDC
 - Overprediction of HTR performance
 - Maximum difference is only 1.5 °C
 - Measurement $\Delta T = 1.1 \text{ °C}$

3

- Cooler outlet temperature is very close
 - Maximum difference is only 0.3 °C
 - Measured temperature was an input for PDC
 - Verifies control performance, not necessarily cooler model

Compressor outlet temperature is predicted very accurately

- Maximum difference is only 1 °C
 - Within the measurement uncertainty

- Compressor outlet <u>pressure</u> is predicted accurately earlier and late in the transient
 - Pressure is overpredicted in the middle section (2
 - High rotational speeds
- Turbine inlet pressure is consistently overpredicted by the code
 - In part, due to compressor performance overprediction
 - Also, underprediction of the pressure drops
 - LTR

- Low side pressures show much better agreement
 - Especially, for the compressor inlet (1)
- Compressor inlet density prediction is close
 - The only density measurement in the loop
 - Some difference at later stages are possibly due to difference in the cooler-outlet temperature

- **CO₂ flow rate** is overpredicted by the code for most of the transient
 - By about 5%
 - Consistent with steady-state results
 - Flow rate was calculated from the heat balance
 - Perfect heat balance was not achieved at 3356 s
 - Also, code predicts much faster change in the flow rate
 - Possibly, due to heat capacity of turbomachinery, which is ignored in the PDC by virtue of using the turbomachinery maps

Lessons Learned from SNL Loop Simulation (So Far)

- The PDC transient results are close to the experimental data
 - The existing modeling capabilities may be sufficient
- Lack of information on PCHE internal configuration
 - E.g., channel diameter, zigzag angle
- The loop could not be run for a long time to achieve "perfect" heat balance
 - Required for steady-state initialization in the PDC
 - "Steady-state" at *supercritical* conditions is <u>highly recommended</u>
- Heat loss in pipes, recuperators, and turbine is difficult to account for
 - The heat loss in turbine volute is not measured
- Water flow rate measurements are needed for cooler model validation
- Complete understanding of the control action is required for modeling
- Temperature measurement uncertainty (1.1 °C) is significant
 - Density is only measured at the compressor inlet
- Turbomachinery performance is overpredicted at higher speeds
 - Need loss correlations better suited for small-scale TM
- Note that all of these effects are specific to the SNL small-scale loop and become negligible for commercial-scale S-CO₂ cycles

Summary

- Plant Dynamics Code is developed at ANL for analysis of S-CO₂ cycles
 - Addresses specific features of the cycle
- A new approach was developed to couple the PDC with SAS4A/SASSYS-1
 - Coupled reactor-BOP calculations
- A control strategy for the S-CO₂ Brayton cycle has been developed
 - Combination of various control mechanisms
 - Enables load following from 100% to 0% and transition to decay heat removal mode
- Active reactor control is implemented in the coupled PDC-SAS4A/SASSYS-1 codes
 - Aspects of S-CO₂ cycle operation on the reactor control are discovered and investigated
- PDC validation is ongoing
 - Effort is concentrated on modeling the SNL S-CO₂ Loop
 - Lessons learned regarding simulation of the experimental facilities