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� The presentation provides an update on recent analyses of the S-CO
2

Brayton 

cycle at ANL

– Since the last S-CO
2

Symposium in 2011

– The majority of the results has been already presented at various conferences

� The analysis presented is this paper has been carried out using the Plant Dynamics 

Code (PDC) developed at ANL

– Most of the S-CO
2

cycle control analysis carried out at ANL and presented here has been 

done in application of the cycle as an energy converter for Sodium-Cooled Fast Reactors 

(SFRs)

� Recent Progress

– Coupling of the PDC with the SAS4A/SASSYS-1 code

– Dynamic simulation and control of the S-CO
2

cycle

– S-CO
2

cycle control with active reactor control

– ANL Plant Dynamics Code validation
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ANL Plant Dynamics Code (PDC)

� Specifically developed for analysis of S-CO
2

cycle

– One-dimensional system level transient analysis code

– Targets the specific features of the cycle

• Operation close to the critical point

• Recompression cycle (if needed) 

– Real CO
2

properties

• Properties variation in HX’s and turbomachinery

• No ideal gas assumptions

• Compressibility effects 

� Incorporates S-CO
2

cycle control mechanisms and logic

� Incorporates steady-state design code to determine cycle initial conditions

� Integrated “semi-automatic” turbomachinery design

– Design and performance subroutines for both turbine and compressor

� Fast solution scheme runs efficiently on a PC 

– Taylor series 

– Almost real time (for slow transients)
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Coupling of the PDC with the SAS4A/SASSYS-1 Code
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SAS4A/SASSYS-1 Code

� Developed by Argonne National Laboratory

� Leading  capability for analysis of liquid-metal-cooled reactors at system level

– Primary use: safety analysis

� Incorporates detailed reactor as well as primary and intermediate loop thermal 

hydraulics

– Forced and natural circulation, pump models, heat exchangers

� Reactivity coefficients specific to fast reactors

– Core axial and radial expansions, control rod expansion, coolant density, etc.

– Radial-, axial-, and temperature-dependent distributions in transients

� Includes balance-of-plant model

– Currently limited to steam cycles

� Coupling PDC with SAS4A/SASSYS-1 would combine analysis capabilities for the 

reactor and S-CO
2

BOP

– Covering the entire plant
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Coupling PDC with SAS4A/SASSYS-1 code

� Coupling PDC with SAS4A/SASSYS-1 would combine analysis capabilities for the 

reactor and S-CO
2

BOP

– Covering the entire plant

� However, the access to SAS4A/SASSYS-1 source code is restricted (Export 

Controlled)

– Previously, the two codes were run separately with iterative update of input files

� New coupling scheme uses SAS4A/SASSYS-1 PC executable file

– Does not require access to the SAS4A/SASSYS-1 source code

– Utilizes Fortran capabilities to work with EXE files

– Takes advantage of SAS4A/SASSYS-1 restart capability

� The data transfer between PDC and SAS4A/SASSYS-1 

– Occurs at each SAS4A/SASSYS-1 time step

– Is done by reading SAS4A/SASSYS-1 output files and writing input files

– Involves intermediate sodium conditions at RHX inlet and outlet
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PDC-SAS4A/SASSYS-1 Coupling

� New coupling scheme uses 

SAS4A/SASSYS-1 PC executable file

– Does not require access to the 

SAS4A/SASSYS-1 source code

– Utilizes Fortran capabilities to work 

with EXE files

– Takes advantage of SAS4A/SASSYS-1 

restart capability

– Could be applied to other heat source 

codes

� The data transfer between PDC and 

SAS4A/SASSYS-1 

– Occurs at each SAS4A/SASSYS-1 time 

step

– Is done by reading SAS4A/SASSYS-1 

output files and writing input files

– Involves intermediate sodium 

conditions at RHX inlet and outlet
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SAS4A/SASSYS-1 –  
Reactor Side 
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Dynamic Simulation and Control of the S-CO
2
Cycle
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S-CO
2
Cycle Control Analyses

� Load Following

– Goal: to show that the cycle can be controlled to change power level

– Investigate and optimize control mechanisms

� Decay heat removal

– Goal: demonstrate that the cycle can be used in low power regime

– Investigate and optimize control mechanisms
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S-CO
2
Cycle Control

� Included into transient  PDC equations

� Relies on combination of control mechanism

– Turbine bypass [17]

• Fastest power control (on pressure and flow)

• Least efficient 

– Inventory control [18]

• The most efficient (preserves TM velocity triangles 

for ideal gas) 

• Slow (introduce disturbance to compressor conditions)

• Limited by tank volume

• Decreases compressor surge margin

– Turbine throttling [16] 

• More efficient than TBP, but less efficient than INV

• Introduces an extra pressure rise with valve closing (not good for full pressure)

– Cooler bypass [19]

– Cooling water flow rate [14]

– Compressor surge control 
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S-CO
2
Cycle Control: Control Strategy

� Use inventory control when possible

– Subject to storage tank volume limitation

� Turbine throttling

– Outside INV range

� Turbine bypass for small 

load changes and 

fine-tuning

� Minimum temperature 

control 

– Always

� Shaft speed control 

– For decay heat removal

– After disconnection from 

the grid

� Compressor surge control

– When needed

– Low power
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Demonstration of S-CO
2
Cycle Control with PDC
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� Simulation in two stages

– First stage: Load following from 100% down to 0%

– Second Stage: Transition to decay heat removal

First Stage

� The electrical grid demand was set to reduce linearly at 5%/min rate from 100% to 

0%

– 1,200 s transient time

– The only external input

� S-CO
2

cycle automatic controls adjust the conditions on the BOP side to maintain 

balance between the net generator output and the grid demand

� Autonomous reactor operation is assumed

– Sodium-cooled fast reactor (ABR-1000)

– No reactor power control by control rods

• Only rely on reactivity feedbacks

– No control of primary and intermediate pumps



Results of Transient Simulations: Load Following

� Grid demand decreases linearly to 0 (external input)

� Net generator output follows the grid demand very closely 

– Achieved by control actions on S-CO
2

side
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Results of Transient Simulations: Load Following

� Reduced heat removal by CO
2

affects the temperatures on the sodium side of 

Na-CO
2

HX

– Sodium inlet temperature is defined by heat balance on the reactor side

� On the reactor side, changing intermediate and then primary loop temperatures 

introduce reactivity to the core
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Results of Transient Simulations: Load Following

� The net effect of reactivity feedbacks is reduction of reactor power 

– Which closely follows the heat removal by CO
2

side

– Even without active reactor power control

� The peak reactor temperatures stay below the nominal values

– Result of strong negative reactivity feedbacks of ABR-1000 SFR core
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Transition to the Decay Heat Removal Mode
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� Goal: find S-CO
2

cycle control which would allow plant operation at low reactor 

power

– 6% or less

� Simulation was continued after the generator power reached 0% level

– Same transient, Stage 2 starts at 1,200 s

� Generator is assumed to be disconnected from the grid

– Zero grid demand

– Ideally, the control system would maintain zero net generator output

• If there is enough reserve power in turbine to drive the compressors

– Turbomachinery shaft speed is assumed to reduce linearly to 20%

� No other changes in external input

– Still autonomous reactor operation 

� Minimum temperature control is no longer required to maintain minimum 

temperature at design point

– As long as the temperature stays above the critical value



Results of Transient Simulations: 
Transition to Decay Heat

� Slowing down shaft reduces both turbine and compressors work

– Still, turbine provides sufficient power to drive the compressors 

– Zero net generator output is maintained

� The automatic cycle control maintains zero generator power

– To match zero load demand
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� Compressor surge/stall approach is detected at about 2,100 s

– Triggering surge control flow

– Still, the flow is not too high to increase the compressor work significantly 
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Results of Transient Simulations: 
Transition to Decay Heat
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� Temperatures above the critical point are maintained

– Even with disabled cooler bypass control

� The heat removal rate by the cycle reduces to about 3% nominal
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Results of Transient Simulations: 
Transition to Decay Heat
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S-CO
2
Cycle Control with Active Reactor Control
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Active Reactor Control in PDC-SAS4A/SASSYS-1 Codes

� In load following transients, the changes start on BOP side

– E.g., turbine bypass valve opening in response to reducing grid load

– Reactor “sees” changes through CO
2

heat removal variation (reduction) in the 

intermediate sodium-to-CO
2

reactor heat exchanger (RHX) 

� To maintain intermediate sodium temperatures, sodium flow rate needs to be 

adjusted (reduced)

– IHTS pump control 

� This will affect IHX 

temperatures 

– Primary pump control

� With changed (low) primary 

coolant  flow, reactor power 

needs to be changed 

– To maintain core-outlet 

temperature

– By means of the control rod 

movements 
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Reactor Control Logic

Controllable Parameter Measured Value Controlled By Control

Intermediate loop cold-

side temperatures

RHX-outlet Na 

temperature

Intermediate sodium 

flow rate 

Intermediate sodium 

pump torque

Primary loop cold-side 

temperatures

IHX-outlet primary Na 

temperature

Primary sodium flow 

rate 

Primary sodium 

pump torque

Hot-side temperatures
Core-average outlet 

temperature
Core power (reactivity)

External core 

reactivity
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� Active reactor control logic was implemented in the PDC

– Control action is communicated to SAS4A/SASSYS-1 

� In ideal world, the temperatures will be maintained at steady-state levels 

everywhere

– Power/flow=1 

� In reality, system delays (and other limitations) will prevent that

– Are there S-CO
2

cycle limitations?



Results of Active Reactor Control 
(40% linear load reduction)

� Active control showed better results

– Less temperature variation

– Better power-to-flow ratio

– Higher cycle efficiency

� However, these results were 

obtained for only 40% load 

reduction

– What happens below 60% 

load?
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CO
2
Temperature at RHX Inlet

� In highly-recuperated S-CO
2

cycle, RHX-

inlet temperature is defined by HTR 

performance

� When flow rate increases, heat 

transfer in HTR is reduced, RHX-inlet 

temperature ↓
– During turbine bypass

• 0-120 s

� With decreasing flow rate, RHX-inlet 

temperature  ↑
– With inventory control

� When CO
2

temperature at RHX cold 

end reaches steady-state value for 

sodium temperature, ability to 

maintain that temperature is lost
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CO
2
Temperature at RHX Inlet

� Several approaches to control the temperature (prevent from increasing) were 

investigated 

– Reduced inventory control action

– Recuperator bypass

– Relaxed sodium temperature requirements

– Reduced core-outlet temperature

� Control on S-CO
2

cycle side resulted in too low cycle efficiency

– Plus, there are additional limits

� Results with relaxed temperature limits are acceptable

– If high structure temperatures (say, 400 oC) can be tolerated

� Reduced core-outlet temperature is recommended as a preferred option

– All temperature limits are satisfied

• There are short-term effects

– Cycle efficiency drop from lower turbine-inlet temperature is not significant
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ANL Plant Dynamics Code Validation
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ANL Plant Dynamics Code V&V History

� S-CO
2

cycle has never been commercially operated

� Earlier V&V was limited to benchmark calculations against similar codes elsewhere

� Later, limited code validation on individual components

– Heat exchangers (PCHE test loop at ANL)

– Turbomachinery (Ideal gas loop at SNL)

– Small-scale S-CO
2

compressor test loop at Barber-Nichols Inc.

� Recently, Barber-Nichols, Inc. (BNI) and Sandia National Labs (SNL) constructed 

and operated small-scale closed split-flow S-CO
2

cycle loop 

– SNL Loop will provide a configuration for PDC testing and validation of modeling

• CO
2

working fluid

• Equipment designed to operate close to the critical point

• Recompression cycle configuration

– Recent PDC validation effort is focused on simulating the SNL Loop and data
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July 14, 2011 SNL Loop Setup

� Single TAC

� Two recuperators

– HTR is “overdesigned” for this setup -> very little, if any, heat transfer in LTR

– Only HTR is simulated in the PDC 

� 4 heaters

– 390 kW input limit at 

BNI facility
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SNL Loop Data and Modeling

� Some specifics of the experimental setup (for model validation purposes) were 

identified

– Significant heat loss in pipes and in turbine

• The heat loss in turbine volute is not measured

– The loop could not be run for a long time to achieve “perfect” heat balance

• Required for steady-state initialization in the PDC

– Lack of information on PCHE internal configuration

– No water flow rate measurements

– Temperature measurement uncertainty (1.1 oC) is significant 

� Some features were dealt with modeling assumptions

"Recent Developments in S-CO2 Cycle Dynamic Modeling and Analysis at ANL" by A. Moisseytsev, 4th S-CO2 Symposium, Pittsburgh, PA, September 9-10, 2014

29



Transient Simulation: Assumptions

� The LTR was excluded from the PDC model

� The electrical heaters are simulated with shell-and-tube heat exchangers 

– Sodium flow on the hot side for the steady-state model

– Direct heat input into the HX “tubes” in transients

� All of the heat losses in the system were simulated to occur in the HTR-heater pipe 

– Including turbomachinery heat loss

– The amount of the heat loss was determined to achieve a heat balance throughout the 

system at steady-state conditions

– In a transient, the heat loss is scaled with the changing CO
2

temperatures in the pipe 

� Other than the heat loss, no heat transfer is simulated in the pipes in the PDC

– Also includes the absence of heat exchange between the CO
2

and the pipe walls 

� The TAC drain flow is not included into the PDC steady-state and transient models 
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Steady-State Calculations

� Good agreement was achieved for 

steady-state

– Required significant heat loss 

simulation (19 kW) at heater inlet

• Simulates all heat losses in the 

cycle

• Also compensates for not 

achieving perfect heat balance in 

HTR by 3356 s

– Skipping LTR did not affect 

temperatures much
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Dynamic Simulation of SNL S-CO
2
Loop with the PDC

� Transient is defined by the experimental data through the external input:

� Initial conditions: “steady-state” at 3356 s
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Transient Results Presentation
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T600

PDC

� Compare all available experimental measurements with the corresponding PDC 

predictions 

– Temperatures, pressures, density, flow rates

� The following slides show such comparisons for each individual parameter

� Few results are presented here

– Differences are briefly discussed

– See the paper for more detailed comparison

Measured data (e.g., Temperature at point 600)

Corresponding code results



Transient Results Comparison

� Heater outlet temperature is predicted very accurately

– Results of the automatic control

– Short-term behavior is achieved by control’s PID coefficients optimization

– In some cases, there is not enough reserve capacity in the heater 

• Discussed below

� Turbine inlet temperature is very close to the heater outlet

– There is, however, a somewhat noticeable time delay in the experimental data 

• Not showing in the PDC – result of not simulating pipe heat capacity
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Transient Results Comparison

� Turbine outlet temperature is predicted accurately earlier in the transient

– But diverges with higher turbine speed

• Overprediction of turbine performance at higher speeds

� HTR hot side outlet temperature is slightly overpredicted by the PDC

– Overprediction of HTR performance

– Maximum difference is only 1.5  oC

• Measurement ΔT = 1.1 oC
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Transient Results Comparison

� Cooler outlet temperature is very close

– Maximum difference is only 0.3  oC

– Measured temperature was an input for PDC

• Verifies control performance, not necessarily cooler model

� Compressor outlet temperature is predicted very accurately

– Maximum difference is only 1  oC

• Within the measurement uncertainty
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Transient Results Comparison

� Compressor outlet pressure is predicted accurately earlier and late in the 

transient

– Pressure is overpredicted in the middle section 

• High rotational speeds

� Turbine inlet pressure is consistently overpredicted by the code

– In part, due to compressor performance overprediction

– Also, underprediction of the pressure drops

• LTR
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Transient Results Comparison

� Low side pressures show much better agreement

– Especially, for the compressor inlet

� Compressor inlet density prediction is close

– The only density measurement in the loop

– Some difference at later stages are possibly due to difference in the cooler-outlet 

temperature
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Transient Results Comparison

� CO
2

flow rate is overpredicted by the code for most of the transient

– By about 5%

– Consistent with steady-state results

• Flow rate was calculated from the heat balance 

• Perfect heat balance was not achieved at 3356 s

– Also, code predicts much faster change in the flow rate

• Possibly, due to heat capacity of turbomachinery, which is ignored in the PDC by virtue of using 

the turbomachinery maps
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Lessons Learned from SNL Loop Simulation (So Far)

� The PDC transient results are close to the experimental data

– The existing modeling capabilities may be sufficient 

� Lack of information on PCHE internal configuration

– E.g., channel diameter, zigzag angle

� The loop could not be run for a long time to achieve “perfect” heat balance

– Required for steady-state initialization in the PDC

– “Steady-state” at supercritical conditions is highly recommended 

� Heat loss in pipes, recuperators, and turbine is difficult to account for

– The heat loss in turbine volute is not measured

� Water flow rate measurements are needed for cooler model validation

� Complete understanding of the control action is required for modeling

� Temperature measurement uncertainty (1.1 oC) is significant 

– Density is only measured at the compressor inlet

� Turbomachinery performance is overpredicted at higher speeds

– Need loss correlations better suited for small-scale TM

� Note that all of these effects are specific to the SNL small-scale loop and become 

negligible for commercial-scale S-CO
2

cycles
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Summary

� Plant Dynamics Code is developed at ANL for analysis of S-CO
2

cycles

– Addresses specific features of the cycle

� A new approach was developed to couple the PDC with SAS4A/SASSYS-1

– Coupled reactor-BOP calculations

� A control strategy for the S-CO
2

Brayton cycle has been developed

– Combination of various control mechanisms

– Enables load following from 100% to 0% and transition to decay heat removal mode

� Active reactor control is implemented in the coupled PDC-SAS4A/SASSYS-1 codes

– Aspects of S-CO
2

cycle operation on the reactor control are discovered and investigated

� PDC validation is ongoing

– Effort is concentrated on modeling the SNL S-CO
2

Loop

– Lessons learned regarding simulation of the experimental facilities
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