

Investigation of a Dry Air Cooling Option for an S-CO₂ Cycle

Anton Moisseytsev and Jim Sienicki

Argonne National Laboratory, USA

The 4th International Symposium - Supercritical CO₂ Power Cycles Pittsburgh, PA September 9-10, 2014

Background

- Traditionally, (nuclear) power plants use water for ultimate heat sink
 - Restricts plant location choices
- At the same time, the water restrictions are becoming more important
- If dry air cooling could be shown to be feasible for an S-CO₂ cycle, it will basically eliminate any water use by the plant
- Goal: investigate what it takes to apply dry air cooling to an S-CO₂ cycle

Why water?

- Much better heat transfer medium than air
 - —
 - 1000 times higher density4 times higher specific heat —

4,000 times lower volumetric flow and pumping power

20 times higher thermal conductivity —

	Units	Water (at 1 atm, 30 °C)	Air (at 1 atm, 30 °C)	CO ₂ (at 7.4 MPa, 40 °C)
Density	kg/m ³	998.2	1.196	224.1
Specific heat (C _p)	kJ/kg-K	4.184	1.005	3.160
Thermal conductivity	W/m-K	598.5*10 ⁻³	25.5*10 ⁻³	33.4*10 ⁻³
Viscosity	Pa*s	1.0*10-3	18.3*10 ⁻⁶	20.2*10-6

Reference Conditions and Assumptions

- 1000 MWt (400 MWe) S-CO₂ cycle for a Sodium-Cooled Fast Reactor (SFR)
 - 40.3% cycle efficiency
- 31.25 °C minimum cycle temperature
 - 0.25 °C margin over critical temperature
 - 32.7 °C cooler-outlet temperature
- 7.4 MPa minimum and 20 MPa maximum cycle pressures
- 30 °C inlet water temperature
 - Assumed same for air
 - Atmospheric pressure
- Realistic cooler analysis
 - CO₂ properties
 - Multi-nodal treatment
 - PCHE or shell-and-tube

Selection of Air Flow Rate

- Pumping (fan) power is expected to be very high for air
 - 4,000 time higher volumetric flow rate
 - Low flow rate is better

- Flow rate is limited by pinch point in cooler
 - Condensation-like temperature profile on CO₂ side near the critical point

Air Cooling at Reference Conditions

- 32.7 °C CO₂-outlet temperature
- Same cooler design as for water
- Air flow rate is practically limited by 40,000 kg/s
 - 2 times higher than for water
 - 2,000 times higher volumetric flow rate
 - Huge pressure drop
 - Huge pumping power (>1000 MW)

Air Flow Rate, kg/s	Temperature Approach, °C	Cooler Heat Transfer Length, m
80,000	2.5	1.7
60,000	2.0	2.0
40,000	1.3	3.8
30,000	1.0	9.6
Water @ 20,000	2.5	0.73

Better Cooler Design?

- Some of these issues can be offset by changing cooler design
 - Larger channel
 - More HX units

Cooler Size Comparison - Reference Conditions

Figures show 1% (1/100) of the HX

Effect of Air Cooling on Cycle Conditions

- Previous results clearly show that dry air cooling at reference conditions (31.25 °C CO₂) will be too expensive
 - Huge HX and 4.4% reduction in net output
- Both HX size and power consumption can be reduced by increasing CO₂ temperature
 - Of course, at the expense of lower cycle efficiency
- Optimization calculations found that the optimal design is obtained at or close to the pseudo-critical line at the compressor inlet
- At each point:
 - Air flow rate is selected to avoid excessively low temperature approach in cooler
 - CO₂ flow split between compressors is selected to maximize cycle efficiency
 - HX volume (number of units) is varied parametrically
 - Rest of the plant design is fixed (reactor conditions, 20 MPa high pressure, other HX designs,...)

Selecting Optimal Cooler Design

- At each condition, there is a trade-off between the cooler size and the cycle efficiency
 - Efficiency is also affected by the air circulation power
- These two characteristics cannot be compared in TH analysis
 - Only in **cost** analysis

Cost-Based Optimization

- The technique was previously developed to optimize other S-CO₂ cycle components
 - Heat exchangers and turbine
 - Provides direct comparison between the HX size (cost) and the cycle performance (efficiency)
- Based on comparing the plant cost per unit electrical output
 - Good measure for nuclear plants, where most of the cost is in capital

$$[\$/kWe]_{new} = \frac{[Plant Cost]_{new}}{[Plant Power]_{new}} = \frac{[Plant Cost]_{ref} - [HX. Cost]_{ref} + [HX. Cost]_{new}}{\eta_{cyc,new} * Q_{Rx}}$$

$$Cycle efficiency \qquad 1000 \text{ MWt}$$

$$[Plant Cost]_{ref} = [\$/kWe]_{ref} * \eta_{cyc,ref} * Q_{Rx}$$

Cost-Based Optimization: Assumptions

- Reference capital cost of the plant is 4800 \$/kWe
 - Excluding (water) cooler
 - 1,920 M\$ for 400 MWe
- Cooler cost = Material Cost + Fabrications Cost
 - Material Cost = 7.64 \$/kg (316 stainless steel)
 - PCHE fabrication cost is <u>estimated</u> at \$44,000 per block based on similar earlier vendor quotes
 - An optimistic assumption of 50% reduction in total cooler cost (both material and fabrication) is made for the air cooler
- Additional cost and cost variation of air compressor are ignored

Not for CO₂-air HX

Cost-Based Optimization: Results

- Lowest cost is at 40-45 °C compressor-inlet temperature
 - It is beneficial to accept reduction in cycle efficiency _
 - But reduce HX cost
- Plant capital cost per unit electrical output increases ~40% compared to water cooler
 - Even with an optimistic cooler cost assumption

Water vs Dry Air Cooling - Optimal Designs

Summary

- Dry air cooling would be beneficial for S-CO₂ cycles
 - More choices in plant location and water resources management
- Water has much better heat transfer medium properties
 - Pumping power
- Air cooler at optimal S-CO₂ cycle conditions is huge
 - 100 times bigger for PCHE, 900 times bigger for S&T HX, compared to water PCHE
- Air cooler size could be decreased by increasing CO₂ compressor-inlet temperature
 - Optimal designs are found along the CO₂ pseudo-critical line
- Cost-based optimization is used to characterize trade-off between the cooler size and cycle efficiency
 - Air cooling results in both larger cooler and lower cycle efficiency
 - At least 40% increase in plant capital cost per unit electrical output is calculated
 - Compared to water cooler
 - Even with optimistic cooler cost assumptions

Overall, the results of the air cooling analysis for the S-CO₂ cycle have demonstrated that even though this option might be feasible (provided that significantly larger heat exchangers can be accommodated), this approach would not be competitive with water cooling

• Consider only if water is not available, very restricted, or expensive

S-CO₂ vs Steam Cycle for Dry Cooling

Application to an SFR (ABR-1000)