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Background

� Traditionally, (nuclear) power plants use water for ultimate heat sink

– Restricts plant location choices

� At the same time, the water restrictions are becoming more important

� If dry air cooling could be shown to be feasible for an S-CO
2

cycle, it will basically 

eliminate any water use by the plant

� Goal: investigate what it takes to apply dry air cooling to an S-CO
2

cycle
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Why water?

� Much better heat transfer medium than air

– 1000 times higher density

– 4 times higher specific heat

– 20 times higher thermal conductivity
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4,000 times lower volumetric flow and pumping  power

Units
Water 

(at 1 atm, 30 °C)

Air 

(at 1 atm, 30 °C)

CO2

(at 7.4 MPa, 40 

°C)

Density kg/m3 998.2 1.196 224.1

Specific heat (Cp) kJ/kg-K 4.184 1.005 3.160

Thermal 

conductivity
W/m-K 598.5*10-3 25.5*10-3 33.4*10-3

Viscosity Pa*s 1.0*10-3 18.3*10-6 20.2*10-6



Reference Conditions and Assumptions

� 1000 MWt (400 MWe) S-CO
2

cycle for a Sodium-Cooled Fast Reactor (SFR)

– 40.3% cycle efficiency

� 31.25 oC minimum cycle temperature 

– 0.25 oC margin over critical 

temperature

– 32.7 oC cooler-outlet 

temperature 

� 7.4 MPa minimum and 20 MPa 

maximum cycle pressures

� 30 oC inlet water temperature

– Assumed same for air

– Atmospheric pressure

� Realistic cooler analysis

– CO
2

properties

– Multi-nodal treatment

– PCHE or shell-and-tube
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ABR S-CO2 CYCLE TEMPERATURES, PRESSURES, HEAT BALANCE, AND EFFICIENCIES

472.0 637.0 400.3
19.88

CO2 326.7 362.6
5608.1 kg/s 362.6 19.94 7.755

93.1% 7.777
488.0 472.0
0.100 19.88

166.8 176.5
87.3 179.0 19.96 7.719

Na 7.642 19.96

5035.9 96.1% 86.4 161.9 176.4
kg/s 7.557 90.5% 19.97 7.707

333.0
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Selection of Air Flow Rate

� Pumping (fan) power is expected to be very high for air

– 4,000 time higher volumetric flow rate

– Low flow rate is better

� Flow rate is limited by pinch point in cooler

– Condensation-like temperature profile on CO
2

side near the critical point
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Air Cooling at Reference Conditions

� 32.7 oC CO
2
-outlet temperature

� Same cooler design as for water

� Air flow rate is practically limited by 40,000 kg/s

– 2 times higher than for water

– 2,000 times higher volumetric flow rate

• Huge pressure drop

• Huge pumping power (>1000 MW)
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Air Flow Rate, kg/s Temperature Approach, °C Cooler Heat Transfer Length, m

80,000 2.5 1.7

60,000 2.0 2.0

40,000 1.3 3.8

30,000 1.0 9.6

Water @ 20,000 2.5 0.73



Better Cooler Design?

� Some of these issues can be offset by changing cooler design

– Larger channel

– More HX units

– Shell-and-tube HX
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Cooler Size Comparison – Reference Conditions
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1/100 Water Cooler PCHE – 288 blocks total

0.95 m 

3 blocks

0.6 m x 0.6 m� Figures show 1% (1/100) of the HX

1/100 Air Cooler PCHE – 48,350 blocks total

0.638 m 

10 blocks

0.6 m x 0.6 m 

1/100 Air Cooler Shell-and-Tube – 600 units total

5.82 m L

5.65 m D

����� = 2.3	��

����� = 20	��



Effect of Air Cooling on Cycle Conditions

� Previous results clearly show that dry air cooling at reference conditions 

(31.25 oC CO
2
) will be too expensive

– Huge HX and 4.4% reduction in net output

� Both HX size and power consumption can be reduced by increasing CO
2

temperature

– Of course, at the expense of lower 

cycle efficiency

� Optimization calculations found that 

the optimal design is obtained at or 

close to the pseudo-critical line at the 

compressor inlet

� At each point:

– Air flow rate is selected to avoid 

excessively low temperature approach 

in cooler

– CO
2

flow split between compressors is 

selected to maximize cycle efficiency

– HX volume (number of units) is varied parametrically 

– Rest of the plant design is fixed (reactor conditions, 20 MPa high pressure, other HX designs,…)
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Selecting Optimal Cooler Design 

� At each condition, there is a trade-off between the cooler size and the cycle 

efficiency

– Efficiency is also affected by the air circulation power 

� These two characteristics cannot be compared in TH analysis

– Only in cost analysis

� Notice also still significant penalties 

in both cooler size and cycle 

efficiency compared to the 

reference water cooler 
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Cost-Based Optimization

� The technique was previously developed to optimize other S-CO
2

cycle 

components

– Heat exchangers and turbine

– Provides direct comparison between the HX size (cost) and the cycle performance 

(efficiency)

� Based on comparing the plant cost per unit electrical output

– Good measure for nuclear plants, where most of the cost is in capital

"Investigation of a Dry Air Cooling Option for an S-CO2 Cycle" by A. Moisseytsev, 4th S-CO2 Symposium, Pittsburgh, PA, September 9-10, 2014

11

$/��� ��	 =
�����	��
� ��	

�����	����� ��	

=
�����	��
� ��
 − �.��
� ��
 + �.��
� ��	

����,��	 ∗ ��

HX Cost

1000  MWtCycle efficiency

�����	��
� ��
 = $/��� ��
 ∗ ����,��
 ∗ ��



Cost-Based Optimization: Assumptions

� Reference capital cost of the plant is 4800 $/kWe

– Excluding (water) cooler

– 1,920 M$ for 400 MWe

� Cooler cost = Material Cost + Fabrications Cost

– Material Cost = 7.64 $/kg  (316 stainless steel)

– PCHE fabrication cost is estimated at $44,000 per block based on similar earlier vendor 

quotes

– An optimistic assumption of 50% reduction in total cooler cost (both material and 

fabrication) is made for the air cooler

� Additional cost and cost variation of air compressor are ignored
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Not for CO
2
-air HX



Cost-Based Optimization: Results

� Lowest cost is at 40-45 oC compressor-inlet temperature

– It is beneficial to accept reduction in cycle efficiency

• But reduce HX cost

� Plant capital cost per unit electrical output increases ~40% compared to water 

cooler

– Even with an optimistic cooler cost assumption
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Water vs Dry Air Cooling – Optimal Designs
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ABR S-CO2 CYCLE TEMPERATURES, PRESSURES, HEAT BALANCE, AND EFFICIENCIES

472.0 637.0 400.3
19.88

CO2 326.7 362.6
5608.1 kg/s 362.6 19.94 7.755

93.1% 7.777
488.0 472.0
0.100 19.88

166.8 176.5
87.3 179.0 19.96 7.719

Na 7.642 19.96

5035.9 96.1% 86.4 161.9 176.4
kg/s 7.557 90.5% 19.97 7.707

333.0
326.7
19.94

32.8 84.3 84.3 87.4
7.621 20.00 20.00 7.660

31.25
7.400 89.5%

Efficiency = 40.26 % 5%

32.7 87.3
7.627 7.636

30%
Q,MW T,oC 20,000 30.0 36.8
Input P,MPa 2.32 kg/s 0.205 0.101

95.1%
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ABR S-CO2 CYCLE TEMPERATURES, PRESSURES, HEAT BALANCE, AND EFFICIENCIES

459.7 583.6 356.5
19.85

CO2 331.1 370.5
6336.5 kg/s 370.6 19.93 9.256

93.3% 9.279
488.0 459.7
0.100 19.86

154.6 166.6
84.4 156.0 19.95 9.220

Na 9.144 19.96

5035.9 98.8% 83.4 154.1 166.6
kg/s 9.034 91.2% 19.96 9.208

333.0
331.1
19.92

41.4 79.4 79.4 84.5
9.131 20.00 20.00 9.161

40.00
8.864 89.9%

Efficiency = 38.05 % 5%
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1/100 Water Cooler PCHE 288 blocks total

0.95 m 

3 blocks

0.6 m x 0.6 m

1/100 Air Cooler PCHE 20,000 blocks total

0.457 m 

10 blocks

0.6 m x 0.6 m 

400.3

Efficiencies 

Cycle = 40.3%

Net = 40.0%

31.25

7.40
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Cycle = 38.1%

Net = 35.7%



Summary

� Dry air cooling would be beneficial for S-CO
2

cycles 

– More choices in plant location and water resources management

� Water has much better heat transfer medium properties

– Pumping power

� Air cooler at optimal S-CO
2

cycle conditions is huge

– 100 times bigger for PCHE, 900 times bigger for S&T HX, compared to water PCHE

� Air cooler size could be decreased by increasing CO
2

compressor-inlet temperature

– Optimal designs are found along the CO
2

pseudo-critical line

� Cost-based optimization is used to characterize trade-off between the cooler size 

and cycle efficiency

– Air cooling results in both larger cooler and lower cycle efficiency

– At least 40% increase in plant capital cost per unit electrical output is calculated

• Compared to water cooler

• Even with optimistic cooler cost assumptions

� Overall, the results of the air cooling analysis for the S-CO
2

cycle have 

demonstrated that even though this option might be feasible (provided that 

significantly larger heat exchangers can be accommodated), this approach would 

not be competitive with water cooling

• Consider only if water is not available, very restricted, or expensive
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S-CO
2
vs Steam Cycle for Dry Cooling

� Application to an SFR (ABR-1000)
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