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Abstracts

The Integrated System Test (IST) is a complete 100 kWe supercritical carbon dioxide (S-CO,) Brayton system
constructed and operated to validate design and control strategies. A full plant TRACE (TRAC/RELAP Advanced
Computational Engine) model is the primary tool for thermal-hydraulic and control system design of this test facility.
The model has been used to specify control strategy, control device characteristics and test procedures for safe and
effective operation. While the model suggests which control methods are most effective, actual operation is needed to
validate the predictions and gain valuable experience during nominal, off-nominal and faulted conditions. By qualifying
the code and model using IST data the best design features and control methods will be applied to future applications.
IST control strategy focuses on maintaining a constant compressor surge margin. At a constant surge margin high
compressor efficiency and resilience to planned and unplanned transients is provided. Constant surge margin is
achieved by matching compressor speed to system power output and matching system flow resistance to compressor
speed. Changes in compressor speed and system resistance are best accomplished using a compressor recirculation
(or recycle) valve, potentially in combination with turbine throttle valves. A compressor motor is available for startup,
initial loop heatup, and special test purposes only.

Testing to date has confirmed the effectiveness of the overall IST control strategy and shown the TRACE model to be a
highly effective tool for design and operation of an S-CO,, closed Brayton power loop.

The Integrated System Test (IST) is a complete 100 kWe supercritical carbon dioxide (S-CO,) Brayton system
constructed and operated to validate design and control strategies. The IST turbomachinery was designed and
manufactured by Barber-Nichols Inc (BNI). Predicted turbomachinery performance maps were also provided by BNI
that relates mass flow, turbine/compressor speed, with enthalpy rise/drop. These performance maps are incorporated
into a TRACE transient model used for thermal-hydraulic and control system design.

Recent testing performed over a wide range of operating conditions provides the opportunity for comparing predicted
turbomachinery performance with data at off-nominal conditions. Because operational S-CO, power cycles are
relatively new, there is limited data for empirically derived loss models and design tools to have been validated for use
with operating turbomachinery near the working fluid critical point. The operation of radial inflow turbines and radial
compressor at off-design conditions necessitate the use of “corrected” conditions to interrogate the performance maps.
The pressure losses and need to correct for variations in inlet fluid conditions add to the uncertainty of predicted

turbomachinery performance. IST test data will be compared to performance predictions to assess turbomachinery
performance maps.
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Outline

» Background

» Model Results and Comparisons with Test Data
» Steady State Heat Balance

* Transient
= Turbomachinery Start-up
= Power Transients

» Next Steps/Model Updates
* NIST REFPROP/FIT
* Test data

» Summary



Background

» Integrated Systems Test (IST)

* Characteristics
= Recuperated Closed Cycle Brayton
= Rated power 100kWe
= Power and Compressor Turbines in Parallel
= Constant Speed Turbine Generator
= Generated power occCompressor Speed
= Fixed inventory
* Purpose
= Operational experience
* Demonstrate system control
= Validate transient model
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Background: Integrated Systems Test
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Vent line for loop blow down.
Not used during normal operation.

(Heat sink)

* used for loop throttle studies.
Not shown in lower rt graphic
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Background: Integrated Systems Tes




Background: IST Transient Model

» IST Transient Model
* Built using TRACE and SNAP GUI
* Heat Source to Heat Sink
* Developed compressible fluid modeling methods
* Developed control systems

Hot Qil System S-CO, Brayto Loop

Ch|IIed Water System
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Steady State Comparison: Updated Model
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Steady State Comparison: Updated Model
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IST Startup

»Phenomenon considered during turbomachinery startup

* Compressor surge
e Reverse Turbine Flow
* @Gas Foil Bearing Lift-off

Target Conditions for IST Turbomachinery Startup

Parameter Target Value
Turbine inlet temperatures 165°F (Z=0.7)
. ; Gen |
Compressor inlet temperature 100°F
Compressor inlet pressure 1230 psia
Turbine bypass valve Shut
Compressor recirculation valve 83% open
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IST Startup: Comparison between Model (left)

and Test data (right) for Compressor Startup -
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IST Startup: Comparison between Model and Test

for Turbine Compressor Startup - Shaft Motor
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IST Startup: Comparison between Model and Test
for Turbine Generator Startup
— Shaft Speed and Main Loop Flows
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Power Increase Transient

* |nitial Conditions: Hot Idle (540°F/37,500 rpm)

TG speed increased

 TCspeed increased in steps

 Compressor recirculation valve decreased in steps

e Water flow automatically controlled to maintain compressor inlet T
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Turbine-Compressor Speed {rpm)

Power Increase Transient:
Turbine Generator Power
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Power Increase Transient:

Cooling Water Control Valve Position, Flow Rate
and Compressor Inlet Temperature
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Power Increase Transient:
Heat Exchanger Heat Duties
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Power Increase Transient:
Comparison of Compressor Operation
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Factors that Influence Runtime

» CPU time (clock time) is a function of
 Computer Hardware (RAM speed, etc.)
* Model Complexity

= Component nodalization
= Fluid property models and interrogation (PG-1®, Water, CO,, etc.)

* Transient Rate of Change
» Heat up/Power Transients/Turbomachinery startup/etc.
* Model/Physical time: time of actual transient (hour heat up)

» Up until now: Model Time << CPU time
* Root cause - largest contributor was fluid property calls

» Now: Model Time = CPU time

e Change is the replacement of NIST property calculations with commercial
package (FIT) [Northland Numerics]




NIST/FIT Comparison: Benchmarking

» Suite of 15 transient runs
e Range in duration from 50 to 4000 seconds (physical time)

* Include entire range of operations
= Cold (150°F) with both shafts off
= Start up
= Configuration of CWS
= Heat up/Power Transients

- model time | NIST CPU time NIST to FIT CPU FIT to
Run Name Runld Model Run Deseription (seconds) (seconds) Real Time time (seconds) Real Time

IST vdp017 START TG65K med START |Model startup at full power conditions. Thot = 570F. 50 495 9.91 63 1.26
Rs1ss_THL_TG65K Restart 1 |Reduce TG speed to 65krpm. CCV4 open from 0.00 to 0.06 400 3006 7.51 358 0.90
Rs2ss Speed TGB5K Restart 2 |Control switches changed to transition from T/H LEAD to SPEED cfrl) 400 3444 8.61 397 0.99
Rs3DP _10pps MG_TGB5K Restart 3 |Down power. Recirculation valve open from 0.06 to 0.59. 400 4126 10.32 461 1.15
Rs4DP Hidle CD300 MG _TG65K | Restart 4 |TC speed dropped to idle then Thot reduced from 570F to 300F. 3700 31300 8.46 3530 0.95
Rs5 CD150 MG_TG65K Restart 5 |Cool down from 300F to 150F with TC/TG idle. 3700 33377 9.02 3521 0.95
Rs6CWS_OL_lloap Cidle Restart 6 |Configure CWS to heating mode (isolate inner loop and start Pump1) 400 4777 11.94 510 1.28
Rs751828D 150F CWS100F Restart 7 |TC and TG shut down from idle. Turbine inlet T = 150F. 200 2011 10.05 249 1.24
Rs851525U 150F Restart 8§ |TC and TG start up from 0 rpm. Turbine inlet T = 150F. 120 1838 15.31 218 1.82
Rs9LoopSD_150F Restart 9§ |CWS inner loop pump ON to OFF. CWS to cooling config. 240 3044 12.69 353 1.47
Rs10_WCV3auto Cidle Restart 10 |Transition to cold idle. Comp inlet temp 100F. WCV3 in auto. 1400 13694 9.78 1321 0.94
Rs11HU300F 1Hr TGG65Ktab Restart 11 | Brayton loop heated to 300F from cold idle. 4000 36197 9.05 3790 0.95
Rs12HU435F 1Hr TGG65Kiab Restart 12 | Brayton loop heated to 435F from 300F. 4000 34304 8.58 3786 0.95
Rs13HU540F 1Hr_TGG65Ktab Restart 13 | Brayton loop heated to 540F from 435F. 4000 39875 9.97 3852 0.96
Rs14 TCTG55K_540F_TG65Ktab | Restart 14 |Raise TC and TG speeds from idle to 55 krpm. 300 3080 10.27 299 1.00
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== MODEL: NIST flow at power turbine outlet
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Summary

» TRACE has been demonstrated as an effective tool for S-CO, Brayton analysis
* SNAP GUI/AptPlot enables
= efficient model building
" interpretation of results (animation views)
* predicts loop steady state conditions
* transient predictions support control system development and operation
* minimizes risks (trial and error approach) during testing

» High fidelity transient modeling on a PC can approach real time execution by
replacing NIST REFPROP with Northland Numerics FIT

» IST transient model still evolving: as-designed = as-built > as-tested
* Update performance maps
* Update windage correlation
* Update component performance (e.g. valve Cgp,, Hx’s dP)

» Future: complete qualification of TRACE code for use as an effective tool for
scale-up designs



