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@Need for Fast and Flexible Off-Design Models

There are many open questions about SCO,, power
cycles, such as:

— How do the cycles operate under off-design conditions?

— How should these cycles be controlled?

— What is the best design?

The answers to these questions are specific to the
application being considered.

The answer to “what is the best design?” is very specific
to the economics of the application being considered.

Any economic analysis requires consistent and
computationally efficient performance estimates.
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@Need for Fast and Flexible Off-Design Models

 The possible SCO, cycle applications are diverse:
— Large-scale power generation (axial turbines, large hxrs)
— Small-scale, modular power generation (radial turbines, small hxrs)
— Waste heat recovery (Echogen Power Systems)
— Operation in arid climates (CSP in southwestern United States)
— Operation in temperate climates (nuclear in France)

 The modeling framework presented here provides the
flexibility required to investigate these various applications.

 The developed cycle models are intended to be the core,
Innermost iteration of larger application-specific models.
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@ Off-Design Modeling Methodology

Main
comp A

* Model inputs are shown in bold.

« Compressors, turbine, and heat exchangers are represented
assuming “black box” behavior.

 The operating point is set by matching the head-flow behavior of
the compressor with the flow resistance afforded by the turbine.

University of Wisconsin — Madison Solar Energy Laboratory Slide 5




Off-Design lteration Strategy

read inputs
L e KL

| assume a turbine mass flow rate |

calculate compressor mass flow rate using
specified recompression fraction

v

| Off-Design Compressor Model |

v

| calculate pressure at all states |
v

| | Off-Design Turbine Model |

turbine m equals
compressor m?

—
I | scale design-point pressure drops |
v

scale design-point conductance values
—_— o . — e —

assume a value for Ty
(between T, and T;)
v

assume a value for Ty |
(between T, and Ty) |
[]

| | Off-Design Recompressor Model |

v

Heat Exchanger Model
(low-temperature recuperator)

UA equals (scaled)
specified UA?

| calculate mixing valve outlet state |

yes

increase Ty

UAis too
large?

decrease Ty

Heat Exchanger Model
(high-temperature recuperator)

UA equals (scaled)
specified UA?

| calculate performance metrics |
v
| write outputs |

[]

increase Tg

UAis too
large?

decrease Ty
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Off-Design lteration Strategy

5.0
]  850°C
45-] L7 580°C
] 7 7 aseec
Ry
1 35,000 rpm ————__ ,“ o
4.0 --..ﬁ_x%:(/ / .
assume a turbine mass flow rate o 354 ///
lculat flow rate usi g a0 o 28
calculate compressor mass flow rate using 3 7 \
specified recompression fraction L. \
5 o o5 ] \
\
Off-Design Compressor Model 207 H \
] ) ~ \‘\.
[] 1.5 //5:’ \\ \
- - 1 7 Turbine \ \
| scale design-point pressure drops | 1o __/r’“ N\ \
' 0 2‘0 40 SIO 80 100 1 éO l¢|10 160 180
| calculate pressure at all states | Mass Flow Rate (kg/s)
v
— J—
Off-Design Turbine Model
Main
v Comp #I

turbine m equals
compressor m?

adijust turbine ®
mass flow rate

scale design-point conductance values Recomp #I
v Buffer Comp

Volume

Primary Heat
Exchanger

v
v

V-
AV A A

P | Low Temperature High Temperature
recooler Recuperator Recuperator

University of Wisconsin — Madison y Laboratory Slide 7




Modeling Framework

 The framework is written in Fortran and organized into modules.
» User-replaceable modules allow for application-specific analysis.

Module Name Filename Description
core. 90 Defines a number of user-defined types and contains
core (required) a number of subroutines and functions required by
the design_point and off_design_point modules.
desi . design_point.fo@ Contains the system-level subroutines used to model
esign_point ired ) .
(required) cycles at the design point.

off_design_point.f9@ Contains the system-level subroutines used to model

off_design_point :
-fesienp (required) cycles under off-design or part-load conditions.

Defines the functions responsible for scaling con-

scaling_hxr.f9@ .
8- ductance and pressure drop under off-design mass

heat_exchangers

(may be replaced)
flow rates.
snl_compressor. 9@ Contains compressor and recompressor sizing and Com pone nt
compressors snl_compressor_tsr.f9@0 |performance subroutines based on the SNL
(may be replaced) COMPIeSSor. Models

radial_ turbine.f9@
turbines snl_radial_turbine.f9@

(may be replaced)

Contains the turbine sizing and performance subrou-
tines based on a radial turbine.

module_CO2_properties.f98
C02_properties C02_RP_module. 90

(may be replaced)

Contains the required fluid property subroutines for
carbon dioxide.
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@ Implemented Component Models

« Compressor model is based on the radial
compressor under investigation by Sandia
National Laboratory (SNL).

 Turbine model assumes a a low-reaction radial
turbine, with modifications based on the SNL turbine.

e Heat exchangers are represented by scaling
conductance and pressure drop with off-design
mass flow rate.

RN ;" 0.3
AP=AP, |- UA=UA,, [ ]
design . esign m -
mdesjgn design
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Compressor Model

Wright et al., “Summary of the Sandia Supercritical CO, Development Program,” /5
Presented at the 2011 SCO, Power Cycle Symposium, Boulder, CO, 2011. m ( N \
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@ Low-Reaction Radial Turbine Model

e Mass ﬂOW rate: m= CS Anozzle p

¢ SpOUtIng V6|OCI'[y Cs = \/Z(hturbine,in o hturbine,out,i)
« Aerodynamic efficiency™ 7y sero = 2V V1— V7

g U
09— V —_
08 CS

0.6
05— ---

04— - F [ S P P

Aerodynamic Efficiency

0.1

! Chen, H. and N. C. Baines, “The Aerodynamic Loading of Radial and Mixed-Flow Turbines,” Int. J. of Mech. Sci., Vol. 36, No. 1, pp. 63-79, (1994).
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Performance Map for SNL Turbine

Main Compressor Turbine Performance Map
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Wright et al., “Summary of the Sandia Supercritical CO, Development Program,” Presented at the 2011 SCO, Power Cycle Symposium, Boulder, CO, 2011.
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Effective Nozzle Area (mm®)

Turbine Model Modifications

m= CS Anozzle 'O
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Turbine Model Modifications
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Off-Design Analysis
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Off-Design Operation for Two Designs
Main Shaft Speed and Recompression Fraction Fixed

ssure (MPa)

University of Wisconsin — Madison

Solar Energy Laboratory

Unreasonable
pressures for
25 MPa design

Slide 16



Off-Design Operation for Two Designs
Main Shaft Speed and Recompression Fraction Fixed

94
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Cycle Configuration with
Two-Stage Recompressor
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Three Designs of Interest

Power Output 10 MW

Turbine Inlet Temperature 550°C

Compressor Outlet Pressure 25 MPa

Compressor Isentropic Efficiency 0.89

Turbine Isentropic Efficiency 0.93

Heat Exchanger Pressure Drops 1%

Compressor Inlet Temperature 32°C 40°C 50°C
Compressor Inlet Pressure 7.7 MPa 9 MPa 10 MPa
LT Recuperator Conductance 1.74 MW/K 1.59 MW/K 1.2 MW/K
LT Recuperator Minimum AT 5.3°C 7.2°C 7.2°C
LT Recuperator Approx. Volume 80 m’ 50 m> 40 m®
HT Recuperator Conductance 1.26 MW/K 1.41 MW/K 1.48 MW/K
HT Recuperator Minimum AT 5.1°C 7.7°C 11.4°C
HT Recuperator Approx. Volume 40 m° 35m° 35 m°
Compressor Rotor Diameter 0.120 m 0.148 m 0.183 m
RC First Stage Rotor Diameter 0.162 m 0.162 m 0.157 m
RC Second Stage Rotor Diameter 0.137 m 0.141 m 0.139 m
Turbine Rotor Diameter 0.218 m 0.241 m 0.265 m
Turbine Effective Nozzle Area 1,140 mm? 1,450 mm? 1,790 mm?
Main Shaft Speed 37,080 rpm 31,410 rpm 27,030 rpm
Recompressor Shaft Speed 34,620 rpm 32,570 rpm 32,790 rpm
Recompression Fraction 0.3752 0.3266 0.2578
Turbine Mass Flow Rate 96.8 kg/s 114.5 kg/s 134.2 kg/s
Thermal Efficiency 47.7% 45.0% 41.8%
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@ Maximum Off-Design Efficiency at Rated Power Output
25 MPa High-Pressure Limit

" 32°C Design

X 40°C Design
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t Temperature (°C)
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@ Maximum Off-Design Efficiency at Rated Power Output
30 MPa High-Pressure Limit

32°C Design

30 35 40 45 50 55 60
t Temperature (°C)
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@ Corresponding Control Parameters
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@ Corresponding Control Parameters
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@ investigating Shaft 5. o
Configurations P IETLE f
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 Normal — single shaft, variable speed (identical to previous results)
« Split-Shaft — variable speed compressor, turbine fixed at 3,600 rpm

* Fixed-Shaft — single shaft, fixed at design-point speed
(Recompressor is always driven by a variable speed motor)
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@ Conclusions

« Aflexible and computationally efficient modeling framework was created
that is appropriate for recompression and simple cycle configurations.

e Source code is well-documented and available online.
— http://sel.me.wisc.edu/software.shtmi
— (latest off-design code will be available shortly)

« Inventory control is beneficial for maximizing off-design thermal
efficiency at constant power output.

* Increasing the off-design compressor inlet temperature requires an
Increase in the low-side pressure of the cycle.

— The high-pressure limit of the equipment must be considered.

« Alow-temperature design has a smaller off-design operating envelope
(at rated power) than a high-temperature design.
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Thank You
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