# Bulk Energy Storage using a **Supercritical CO<sub>2</sub> Waste Heat Recovery Power Plant**

Steven A. Wright, swright@supercriticaltech.com Chal S. Davidson, cdavidson@supercriticaltech.com William O. Scammel, bscammel@supercriticaltech.com SuperCritical Technologies Bremerton, Washington,

supercriticaltech.com



#### **Outline:** SCO<sub>2</sub> Bulk Energy Storage One of Many SCO<sub>2</sub> Transformational Power Systems

- List of Transformational SCO<sub>2</sub> Power Systems
- Energy Storage and the Electric Grid
- Pure Bulk Energy Storage SCO<sub>2</sub> Concept (Hermle, ABB)
- Bulk Energy Storage for Power Peaking using WHR Concepts
- Charging Cycle Description
- Discharge Cycle Description
- Energy Storage & Power Peaking Operation
- Economic Benefit
- Summary and Conclusions



## **Transformational SCO<sub>2</sub> Power Systems**

- 1. Oxy-Combustion Direct Injection + CCS (Eff > 50%)
- 2. Oxy-Combustion Indirect Heating + CCS (Eff > 43%)
- 3. Single Cycle High Efficiency Fossil Fuel Combustion ( $\sim$ 50%,  $> \sim$ 150 MW<sub>e</sub>)
- 4. Advanced Nuclear Reactor High Efficiency (45% 50%, TIT > ~600 C)
- 5. Concentrated Solar Power (>50% with TIT > ~750 C)
- 6. Integrated Gas Turbines & SCO<sub>2</sub> Power Systems (SCO<sub>2</sub> Bottoming + Others) Distributed Generation (5-20 MWe) :Smartgrid (~48%-50% SCO<sub>2</sub> Combined Cycle) Marine Propulsion, Other Priority Applications
- 7. Waste Heat Recovery Plants (Eff ~ 25% @ 510 C)

Focus

- 8. USC Pulverized Coal Plant Upgrades (Topping Cycles or Other)
- 9. Energy Storage and Power Peaking (RT Eff =55-60%, 4 hrs, 50-100 MWe)
- 10. Combined Cooling, Heat, and Power + CHP, CCP
- 11. Heat Pump / Refrigeration (Cooling + Heating is favored by CO<sub>2</sub> EOS)

Key to Achieving these Technologies: Multiple Successful Demonstration SCO<sub>2</sub> Power Systems



The Power Peaking with Bulk Energy Storage - Addressing the Energy Storage Problem

150 Hours at Peak Usage

Costs you ~20% of your Electric Bill

- Off-Peak versus On-Peak=Critical Peak Cost 10 X
- 2% of Power usage Costs 20%

SCO<sub>2</sub> Bulk Energy Storage Offers
Site Independent Storage
10-100 MWe for 4-5 hours



- Other Benefits
  - Better Grid Stability

Little Competition

- Lower Distribution Costs
- Less Use of Innefficient Plants
- Better use of Capital Assets 
   Off Peak Energy Flow
   Domand Energy Flow

SuperCritical Technologies

## Bulk Thermal Energy Storage

J. Hermle (ABB), SCO<sub>2</sub> Power Cycle Symposium 2011, Boulder Co.



Ice storage tank

| Key Performance Parameters                   | Value      |
|----------------------------------------------|------------|
| Coefficient of Performance in Charging Cycle | 4.51       |
| Efficiency in Discharge                      | 13.35%     |
| Heat Added/Removed to/from Water HX          | 179895 kWh |
| Heat Removed/Added from/to the Ice           | 139989 kWh |
| Round Trip Efficiency (no additional losses) | 60.2%      |
| Round Trip Efficiency with 3% losses         | 56.7%      |
| Maximum CO2 Temp Charging                    | 119C       |
| Maximum CO2 Temp Discharging                 | 116C       |
| Minimum CO2 Temp Charging                    | -2.7C      |
|                                              |            |



$$\eta_{Round-Trip} = COP_{Heat Pump} \times \eta_{Thermal} = 100\%_{(Ideal)}$$

Site Independent Bulk Energy Storage Footprint = City Block 50-100 MW<sub>e</sub> for ~4 hours Unlimited Cycles, Target  $RT_{eff}$ =60%

Reference:Round Trip EfficiencyBatteries:= 70%, 600 cyclesPumped Hydro= 70%



# Ice Energy Storage for SCO<sub>2</sub> Power Peaking

- Goal: More Efficient use of Capital Assets (SCO<sub>2</sub> Hardware) than Orig. Concept
  - Orig Concept Operates 4 hrs/day
  - This Concept Operates 24 / 7 / 365
- Avoids Flow Direction Reversal
- Avoids Flow Rate Doubling
- Uses larger dT in HXs
- Provides Bulk Energy Storage as Ice
- Uses Waste Heat from Gas Turbine
   No Hot Water Storage Tanks
- Maintain: Site Independence
  - No Dams or Caves
  - Foot Print: ~City Block for 50-100  $MW_e$
- Maximize Dispatchable Power (profit)
- SCT Patented Process





## Charging Cycle, SCO<sub>2</sub> Heat Pump



 $T_{evap} = -5 C, T max = 86 C$   $P_{evap} = 30.5 \text{ bar}, P max = 91.3 \text{ bar}$   $Net COP_{Refr} = 2.69 \text{ exp-valve} / COP = 3.34 \text{ turbo-exp}$  Mass Flow Rate = 50 kg/s-valve / 48 kg/s-turbo-exp  $Q_{Refrig} = 8445 \text{ kW} = 2401 \text{ Refr.-Ton}$ 



#### SCO<sub>2</sub> with Waste Heat Recovery Normal Operating WHR Cycle : Water-Air Cooling (20 hrs) Discharge Cycle: Ice Cooling (4 hrs)



- 1. Waste Heat 39.4 MW<sub>th</sub>, @ 538 C
- 2. Split Flow with Preheating, Typical Cycle for Waste Heat Recovery (ORCs)
- 3. Compressor Inter-recuperation (SCT Patented)
- 4. Water-Air Cooling versus Ice-Cooling<sup>+</sup>



# WHR Brayton Cycle and the Ice-Rankine Cycle



- Lower Heat Rejection Temperature due to Ice Melting
  - Increases Cycle Efficiency
  - Increases Combustion Efficiency

```
31.7% - 34.5%
```

44.7% - 68%

– Lower Turbine Back Pressure Increases  $Pwr^+$  5.58  $MW_e$  – 9.25  $MW_e$  + 66%

<sup>+</sup>Additional Turbomachinery stages may be required for larger P <sub>ratio</sub>



### **Power Peaking Operation**



Dispatchable Power Round Trip Efficiency 148%-183% Excess Dispatchable Power Round Trip Efficiency 58.6% – 73% 9.25 MWe for 4 Hours using 2.5 MWe for Ice Generation over 8 hrs



## **Economics**

- Addressed in a Companion Paper
  - Presented in the Poster Session (William Scammel)
- Major Results
  - Primary benefit is from the conversion of Waste Heat to Electricity
  - ROI for WHR ~3 years
  - Given the assumed pricing structure (Peak Cost at 2-4 X Off-Peak)
    - Additional Benefit is due to Ice-Energy Storage (~8% / year)
- Other Benefits not studied
  - Demand Peak Reductions
  - Spinning Reserve Benefit
  - Grid Stability improvements
  - Need to Work with a Utility to fully understand the Peaking Benefit
    - Will vary by location throughout the country



# **Summary and Conclusions**

- SCO<sub>2</sub> Power Systems Promise Transformational Power Systems
- SCO<sub>2</sub> Offer Methods for Bulk Energy Storage
- Power Peaking with Ice-Energy Storage Plant was Described using Waste Heat Recovery
- System Proposed was designed to make maximum use of capital assets 24 hours per day
- System
  - Produces Ice using a SCO<sub>2</sub> Heat Pump during off-peak, (8 hrs, 2.5 MWe)
  - SCO<sub>2</sub> Power Cycle using water or air cooling: off-peak (20 hrs, 5.5 MWe)
  - Power Cycle is switched to Ice Melting for Peak Power (4 hrs, 9.2 MWe)
- Excess Round Trip Efficiency **58.6% 73%**
- Dispatchable Round Trip Efficiency 148%-183%
- Improved Economics due to (ROI < 3 yrs)</li>
  - Waste Heat Recovery (primary economic benefit)
  - Ice-Energy Storage (secondary economic benefit)

