

#### Technology Needs for Fossil Fuel Supercritical CO<sub>2</sub> Power Systems

Pete Strakey, Omer Dogan, Gordon Holcomb and Geo Richards

4<sup>th</sup> International Symposium Supercritical CO2 Power Cycles, Sep. 9-10, 2014, Pittsburgh, PA.





# sCO<sub>2</sub> Cycles for Fossil Energy



- Both Closed and Open cycles being investigated.
  - Open cycles attractive due to potential for higher TiT (>700°C).
  - Open cycle is also well suited for carbon capture and sequestration.



# Effect of Turbine Inlet Temperature on Cycle Efficiency



Significant efficiency gains observed up to 2000°C



#### Recuperators

- Compact heat exchangers are the favored technology.
- At 2000°C turbine inlet temperature the recuperator inlet temperature would be around 1500°C!
- For coal syngas applications the recuperator would see  $H_2SO_4$  and  $HNO_3$  along with  $H_2O$ .



Netpower Coal Cycle (Energy Procedia, 37, 2013, pp. 1135-1149)





## **Combustion Dynamics**

- High energy release density of sCO<sub>2</sub> oxy-fuel combustor more like a rocket engine than a gas turbine.
- Rocket engines have a long history of dynamics problems.
- Resonant frequency inversely proportional to combustor size.
  - Small combustor = high resonant frequency and large dampening.
  - Rocket engine most damaging frequencies in the 1-10 kHz range due to transverse modes.
- Saturn F-1 instability required 750 full scale tests to solve at \$1M/test.





#### **Combustion Kinetics**



Equilibrium calculation for stoichiometric  $CH_4/O_2/CO_2$  mixture

- Increasing pressure shifts equilibrium to product side through 3-body recombination reactions.
- Most methane oxidation models based on GRI Mech, which is only validated below 10 atm.
- Direct fired system combustor pressure as high as 300 bar!
  - Uncertainty in heat release rates, CO concentration ...



# **Combustion CFD Modeling**

#### 300 bar, 1MW CH4/O2/CO2 Coax array injector Detailed chemistry Slot injection wall Cooling



**CFD used to assess pressure effects** on injector mixing, chemistry and wall cooling.





# **Turbine Blade Cooling**

- Turbine inlet temperatures much above 700 C require cooling strategies.
  - Internal or regen cooling with CO<sub>2</sub> attractive for sCO<sub>2</sub> cycles.
- Thermosyphon might be an option for rotating blades.

Root



#### Potential Issues

- Fouling and corrosion.
- Heat and efficiency loss to coolant.
- Manufacturing (blind holes, welding, etc.).
- Blade failure (cracking, leaking).
- Manifolding and sealing on rotating parts.





MULTI-FEED

# sCO<sub>2</sub> Properties vs. H<sub>2</sub>O (I)



 Much higher temperature dependence for sCO2 means larger thermosyphon effect. Centripetal acceleration: a<sub>c</sub>=(2πω)<sup>2</sup>r, dp=ρ(r)(2πω)<sup>2</sup>rdr (ω=rev/s). @40,000 rpm & r=10 cm a<sub>c</sub>=180,000 g's



# **CFD Modeling of Blade Cooling**

1" long airfoil 1.5 M Cells Hot Gas: 300 bar, 1400K, 150 m/s Coolant: sCO2 @ 300 bar, 300K Acceleration: 1e6 g's



# Thermosyphon effect observed to be very strong for sCO<sub>2</sub>: excellent heat transfer.



# Materials Issues in sCO<sub>2</sub> Service

- High-temperature oxidation
- Carburization
- Low cycle fatigue and creep-fatigue (effect of oxidation on the crack surface mechanical behavior)



# Oxidizing Potentials Steam vs. CO<sub>2</sub>



| $H_2 O = H_2 + \frac{1}{2} O_2$ | ΔG° (J/mol) = 239,500 - 8.14TlnT + 9.25T |
|---------------------------------|------------------------------------------|
| $CO_2 = CO + \frac{1}{2}O_2$    | ΔG° (J/mol) = 282,400 - 86.81T           |

- Oxidizing potentials of steam and CO<sub>2</sub> are similar.
- pO<sub>2</sub> in both steam and CO<sub>2</sub> is much higher than required for relevant oxidation mechanisms.







 $kp = \Delta W^2/2t$ , where  $\Delta W$  is mass gain and t is time of exposure



### **Austenitic Steels**



- 316 ss demonstrates fastest oxidation in sCO<sub>2</sub>.
- High Cr steels exhibit much less mass gain in sCO<sub>2</sub> compared to 316.
- Carburized layer forms below oxide layers for sCO<sub>2</sub>.







- Ni-based alloys generally show much less mass gain in sCO<sub>2</sub> compared to steam at 650 C.
- No internal oxidation observed for sCO<sub>2</sub> exposure. Could be due to relatively short exposure (~3000 hrs).

## Carburization

- The free carbon on the alloy surface can reach the scalealloy interface via cracks and grain boundaries in the scale and either dissolve or form carbides in alloys.
- Carburization of 9Cr-1Mo steel increases with pressure from 1 bar to 250 bars in CO<sub>2</sub> at 550°C.
- Increasing pressure increases the deposition of carbon in the inner spinel scale.



(Rouillard, F., et al., Oxidation of Metals, 2012. 77(1-2): p. 57-70).

Need more data with

long term exposure!



# Low Cycle Fatigue and Creep-Fatigue

- Given that sCO<sub>2</sub> is an effective oxidizer, it is expected that exposure of power plant materials to the sCO<sub>2</sub> conditions will influence their LCF and creep-fatigue life. However, there are no reports of investigation of this subject in the open literature.
- Intergranular crack initiation can be facilitated if the grain boundaries near the stress concentration are oxidized.
- The effect of oxidation in the crack propagation stage is also observed. Oxidation-assisted intergranular crack growth occurs if the cyclic oxidation damage is greater than the fatigue damage.

Need more data with long term exposure!



### Conclusions

- Some significant technology challenges need to be addressed for FE based sCO<sub>2</sub> power cycles.
  - Recuperators
  - Combustion
  - Turbine cooling
  - Materials
- Good news is that none appear to be show stoppers!

