

Utilization of the Supercritical CO₂ Brayton Cycle with Sodium-Cooled Fast Reactors

Jim Sienicki, Anton Moisseytsev, and Lu Krajtl Argonne National Laboratory

The 4th International Symposium - Supercritical CO₂ Power Cycles Pittsburgh, Pennsylvania September 9-10, 2014

S-CO₂ Brayton Cycle Makes Good Sense for Advanced Nuclear Reactors

- First applications envisioned for the S-CO₂ recompression closed Brayton cycle (Feher cycle) were power conversion for advanced nuclear power reactors
- Twelve years of experience at ANL working on S-CO₂ Brayton cycle development and code development and validation since 2002 continue to confirm initial notions about benefits
 - S-CO₂ cycle is well matched to SFR Cycle wants to operate with a CO₂ temperature rise in sodium-to-CO₂ heat exchangers of about 150 °C which is about equal to the sodium temperature rise through the core
 - Greater efficiency at SFR core outlet temperatures and above
 - Elimination of sodium-water reactions
 - Smaller balance-of-plant footprint reducing size of turbine generator building and portions of reactor building
 - Expected reduction in SFR \$/kWe or LCOE
 - Enables load following to zero electrical grid demand and residual heat removal to initial decay heat levels

AFR-100 - Ideal Application for a S-CO₂ Brayton Cycle Power Converter

- Advanced Fast Reactor (AFR) 100
 - 100 MWe-class (250 MWt) SFR Small Modular Reactor (SMR) under ongoing development at ANL to target emerging markets where a clean, secure, and stable source of electricity is required but a largescale power plant cannot be accommodated
 - Incorporates options and innovative fast reactor technologies that have been investigated or are being developed under U.S. Department of Energy Nuclear Energy programs to achieve capital cost reductions, increase passive safety, and improve core performance
 - S-CO₂ Brayton cycle power conversion is one such innovation with superheated steam cycle as backup
- Modeling incorporated into ANL Plant Dynamics Code used to optimize conceptual design of compact diffusion-bonded heat exchangers and turbomachinery as well as overall cycle conditions to minimize AFR-100 capital cost per unit output electrical power (\$/kWe)

Optimized S-CO₂ Brayton Cycle for the AFR - 100

Gross cycle efficiency of 42.3 % (104.8 MWe)

ABR S-CO2 CYCLE TEMPERATURES, PRESSURES, HEAT BALANCE, AND EFFICIENCIES

Optimized S-CO₂ Brayton Cycle Heat Exchangers

Minimize nuclear power plant total \$/kWe

Heat Exchanger	Sodium-to-CO ₂	CO ₂ -to-CO ₂ High Temperature	CO ₂ -to-CO ₂ Low Temperature	CO ₂ -to-Water Cooler
		Recuperator	Recuperator	
Heat Duty, MWt	250	338.2	156.4	137.2
Number of Diffusion-	96	48	48	72
Bonded Blocks				
Heat Duty per Block, MWt	2.60	7.05	3.26	1.91
Block	1.50/0.6/0.6	0.6/1.50/0.6	0.6/1.50/0.6	0.868/0.6/0.6
Length/Width/Height, m				
Channel Length for Heat	1.500/1.732	0.439/0.439	0.439/0.537	0.748/0.715
Transfer Hot/Cold Side, m				
Hot Side Channels	6 mm Wide by 4	1.3 mm	1.3 mm	2 mm
	mm High	Semicircular	Semicircular	Semicircular
	Rectilinear	Diameter	Diameter	Diameter
Cold Side Channels	2 mm Semicircular	1.3 mm	1.3 mm	2 mm
	Diameter	Semicircular	Semicircular	Semicircular
		Diameter	Diameter	Diameter
Hot Side Inlet/Outlet	528.0/373.0	403.9/185.0	184.9/89.8	89.6/32.66
Temperature, °C				
Cold Side Outlet/Inlet	516.6/367.0	367.0/174.6	171.3/84.3	35.5/30.0
Temperature, °C				
Hot Side Inlet/Outlet	0.100/0.100	7.722/7.696	7.682/7.666	7.635/7.628
Pressure, MPa				
Cold Side Outlet/Inlet	19.802/19.946	19.962/19.971	19.987/19.995	0.101/0.226
Pressure, MPa				
Hot/Cold Side Flowrate,	13.2/14.2	28.3/28.3	28.3/19.3	12.2/83.3
kg/s				
Block Mass, tonnes	1.701	2.653	2.653	1.586
Effectiveness, %	96.3	95.5	94.6	95.5

Welding Together and Manifolding of Compact Diffusion-Bonded Heat Exchanger Blocks

- Example of sodium-to-CO₂ heat exchanger units
- Reduces number of piping connections while maintaining transportable units

Optimized S-CO₂ Brayton Cycle Turbomachinery

Minimize nuclear power plant total \$/kWe

Turbomachine	Turbine	Main Compressor	Recompressing Compressor
Туре	Axial	Centrifugal	Centrifugal
Power, MWt	164.4	26.41	28.53
Rotational Speed, rpm	3,600	3,600	3,600
Number of Stages	6	1	2
Axial Length without Casing, m	2.67	0.37	0.86
Diameter without Casing, m	0.89	1.90	2.03
Hub Radius Max/Min, cm	35.3/28.2	10.0/10.0	10.8/8.4
Blade Tip Radius Max/Min, cm	44.6/42.5		
Impeller Radius Max/Min, cm		56.9/56.9	63.2/58.7
Blade Height Max/Min, cm	16.4/7.2	8.7/1.4	11.1/1.2
Blade Chord Max/Min, cm	10.9/7.4		
Blade Length, Max/Min, cm		50.6/23.3	57.8/25.0
Inlet/Outlet Pressure, MPa	19.79/7.751	7.621/20.00	7.643/19.98
Inlet/Outlet Temperature, °C	516.6/403.9	32.79/84.3	89.66/182.0
Flowrate, kg/s	1360.5	952.2	435.4
Maximum Mach Number	0.38	0.47	0.50
Total-to-Static Efficiency, %	92.8	89.1	90.1

Flow Diagram for AFR-100 S-CO₂ Brayton Cycle

 Includes power converter, normal shutdown heat removal systems, and CO₂ charging system

Flow Diagram for S-CO₂ Brayton Cycle Power Converter

Single shaft layout

8

Flow Diagram for Normal Shutdown Heat Removal System for One Intermediate Sodium Loop

Utilizes S-CO₂ at about 8 MPa

AFR-100 Normal Shutdown Heat Removal System

 Cools the reactor when it is shut down and the S-CO₂ Brayton cycle is also shut down or otherwise unavailable due to the need for maintenance or repair

AFR-100 Nuclear Power Plant

Utilizes modular cooling towers

AFR-100 Reactor Building

 Sodium-to-CO₂ HXs are located inside of reactor building but outside of the containment portion

Sodium-to-CO₂ HXs and Normal Shutdown Heat Removal System

Normal Shutdown Heat Removal System

For one intermediate sodium loop

Turbine Generator Building

53 m (173 ft) long by 39 m (127 ft) wide by 16 m (53 ft) high

S-CO₂ Brayton Cycle Power Converter

• Footprint = 32 m (106 ft) long by 33 m (109 ft) wide

S-CO₂ Brayton Cycle Power Converter

• Footprint = 32 m (106 ft) long by 33 m (109 ft) wide

S-CO₂ Brayton Cycle Power Converter Plan View

Below-Ground CO₂ Collection Volumes

 CO₂ is toxic and plant personnel must be protected against health hazards from spreading CO₂ cloud following release

Summary Overall View

 Following collection in below-ground volumes, CO₂ can be slowly released through stacks to mix with atmosphere

Summary

- S-CO₂ Brayton cycle power conversion makes good sense for advanced nuclear power reactors
- Twelve years of experience at ANL working on S-CO₂ Brayton cycle development and code development and validation since 2002 continue to confirm initial notions about benefits
 - S-CO₂ cycle is well matched to SFR Cycle wants to operate with a CO₂ temperature rise in sodium-to-CO₂ heat exchangers of about 150 °C which is about equal to the sodium temperature rise through the core
 - Greater efficiency at SFR core outlet temperatures and above
 - Elimination of sodium-water reactions
 - Smaller balance-of-plant footprint reducing size of turbine generator building and portions of reactor building
 - Expected reduction in SFR \$/kWe or LCOE
 - S-CO₂ Brayton cycle with automatic control strategy and active reactor control enables load following down to zero electrical grid load demand and can continue to be used for residual heat removal from reactor down to initial decay heat levels