The 4th International Symposium -Supercritical CO₂ Power Cycles September 9–10, 2014, Pittsburgh, Pennsylvania

COMPARISON OF SUPERCRITICAL CO2 GAS TURBINE CYCLE AND BRAYTON CO2 GAS TURBINE CYCLE FOR SOLAR THERMAL POWER PLANTS

Yasushi Muto, Masanori Aritomi Takao Ishizuka, Noriyuki Watanabe Tokyo Institute of Technology

CONTENTS

• INTRODUCTION

- SOLAR THERMAL POWER GENERATION WITH A CO2 GAS TURBINE
- SUPERCRITICAL CO2 GAS TURBINE CYCLE FLOW SCHEMES AND THE PRESSURE DEPENDENCY OF CYCLE THERMAL EFFICIENCY
- i. Two Flow Schemes for the CO2 gas Turbine Cycle
- ii. Cycle Thermal Efficiency
- DESIGN CHARACTERISTICS OF SUPERCRITICAL CO2 GAS TURBINE CYCLE COMPONENT DESIGNS
- i. Compressor Designs
- ii. Turbine Designs
- iii. Recuperator Designs
- CONCLUSIONS
- ACKNOWLEDGEMENT

INTRODUCTION

- In Tokyo Institute of Technology, we have devoted our efforts for the development of supercritical CO₂ gas turbine (527°C, 750MWe) connected to the Na-cooled fast reactor.
- We are now devoting our efforts for the application of the supercritical CO₂ gas turbine (650°C, 100MWt) to the solar thermal power plants.

- Though the supercritical CO₂ gas turbine can achieve very high thermal efficiency, very high pressure (20MPa) and bypass flow circuit cause difficulties in the operation and gas turbine design.
- On the other hand, the thermal efficiency of a typical Brayton cycle flow circuit for CO₂ is some percentage lower, but still higher than those for the helium or nitrogen. In addition, there is no problem in the turbomachinery design and operation.

- In nuclear power plants, their unit capacities are large (~1000MWe/unit) and their operations are simple. Then, the supercritical CO₂ GT cycle is preferred.
- In solar thermal plant, unit capacities are small (~20MWe/unit) and daily operation control is needed. Therefore, not only thermal efficiency but also simple and easy operations are important.
- In this paper, the supercritical CO₂ GT cycle and Brayton GT cycle are compared for the solar thermal power plant.

SOLAR THERMAL POWER GENERATION WITH A CO2 GAS TURBINE

- Beam-down sunshine collecting system to reduce radiation heat loss.
- Use of aluminum phase change at 660°C. Then, turbine inlet temperature is 650°C.
- Connected to supercritical CO2 gas turbine

Aluminum

- Thermal conductivity 237 W/m/K
- Melting point 660°C
- Heat of fusion 397 kJ/kg
- Specific heat 0.897 kJ/kg.K

Beam-down Sunbeam Collecting System with Aluminum Receiver

SUPERCRITICAL CO2 GAS TURBINE CYCLE FLOW SCHEMES AND THE PRESSURE DEPENDENCY OF CYCLE THERMAL EFFICIENCY

There are two flow schemes for the supercritical CO₂ gas turbine cycle.

• Flow scheme with bypass compressor circuit.

Supercritical CO₂ gas turbine cycle

• Flow scheme of typical intercooled closed gas turbine cycle. Higher than critical pressure of 8.4MPa.

Brayton CO₂ gas turbine cycle

Supercritical CO₂ GT Cycle

Assumptions

- Turbine adiabatic efficiency 92%
- Compressor adiabatic efficiency 88%
- Pressure loss (ratios over the inlet pressure)
- 1 Solar receiver 2.0%
- (2) Recuperator high temperature side 1.2%
- ③ Recuperator low temperature side 0.4%
- (4) Precooler 1.0%
- 5 Intercooler 0.8%
- Recuperator average temperature effectiveness 91%

Cycle Thermal Efficiency = 48.9%

Brayton CO₂ GT Cycle

Cycle Thermal Efficiency = 45.3%

Cycle Thermal Efficiency

- Turbine inlet temperature = 650°C
- One intercooling for the supercritical CO2 GT cycle.
- Two intercooling for the Brayton CO₂ GT and He GT cycles.
- Then, 3 compressors
- Recuperator effectiveness = 91% for CO₂ GT cycles
- It = 93% for He GT cycle (Recuperator effectiveness = 95%)

Compressor Designs

Design conditions of the CO₂ compressors for the 100MW solar thermal power plant (Rotational speed N = 3,600rpm)

Items	Supercritical CO ₂ Cycle		Brayton CO ₂ Cycle			
	LPC	HPC	BC	LPC	MPC	HPC
Temperature °C	35	35	77.3	35	35	35
Inlet pressure MPa	6.71	8.26	6.78	1.83	2.97	5.46
Outlet pressure MPa	8.32	20.57	20.49	2.99	5.48	10.25
Mass flow rate kg/s	270	270	171	319	319	319

Specific Speed

$$Ns = \frac{m^{0.5} \rho^{0.25} N}{\Delta p^{0.75}}$$

- m=mass flow rate
- ρ=average density (kg/m3)
- N=rotational speed (radian/s)
- Δp=pressure rise (Pa)

Acceptable area for centrifugal compressor

-O-Brayton LPC

- -->-- Brayton MPC
- -D-Brayton HPC

Design results for the supercritical CO₂ GT cycle compressors

The values of polytropic efficiency was predicted from the value of specific speed (Rogers)

Centrifugal compressors		LPC	HPC	BC
Number of stages		1	6	12
Impeller polytropic efficiency, %	First stage	91.6	91.5	91.9
	Last stage	-	89.4	87.4
Impeller outer diameter, m	First stage, m	0.571	0.319	0.458
	Last stage, m	-	0.431	0.529

Note: The efficiency doesn't include losses between stages. Therefore, the efficiency may reduce considerably, in particular for the bypass compressor.

Design results for the Brayton CO₂ GT cycle compressors

Design method is based on that of Cohen.

Axial Compressors	LPC	MPC	HPC
Number of stages	12	15	14
Hub-to-tip-ratio	0.62	0.78	0.88
Adiabatic efficiency, %	89.72	89.62	89.57
Inlet casing diameter, m	0.554	0.499	0.430
Blade height, mm	100-148	53-83	25-39
Axial blade length, m	1.75	1.21	0.56
Rotor blade stress, MPa	138	260	571

There seems no marked difference in the achievable efficiency values between both the cycles. However, extremely many number of stage is needed for the bypass compressor, which may reduce the efficiency markedly.

Turbine Designs

Design conditions of the CO₂ turbines for the 100MW solar thermal power plant

Turbines		Supercritical CO ₂ GT	Brayton CO ₂ GT
Inlet temperature	°C	650	650
Inlet pressure	MPa	20	10
Outlet pressure	MPa	6.94	1,866
Mass flow rate	kg/s	440.3	318.7
Rotational speed	rpm	3,600	3,600

Design Method

- Loss model: Craig & Cox
- Chord length: 30mm (Nozzles) 20mm (Blades)
- Tip clearance: 0.008
- Maximum allowable stress for blades: 400MPa (Mar-M47, 700°C)
- Parameters: Loading coefficient, Flow coefficient, Number of stages

Design results of the CO₂ turbines for the 100MW solar thermal power plant

Turbines		Supercritical CO ₂ GT	Brayton CO ₂ GT
Number of stages		7	4
Loading coefficient		1.3	1.3
Flow coefficient		0.45	0.35
Average peripheral velocity	m/s	132	214
Average mean diameter	m	0.702	1.135
Adiabatic efficiency	%	92.7	92.4
Blade stress	MPa	360	334

There is no marked difference between both the cycles.

Recuperator Designs

Design Conditions of the Recuperators

Items		Supercritical CO2 Gas Turbine		Brayton CO2 Gas Turbine
		RHX-1	RHX-2	RHX
Recuperator effectiveness %		91	91	91
Number of modules		12	12	12
Heat load MW/modules		13.173	5.261	9.775
HT side	Flow rate kg/s	36.689	36.689	26.560
	Inlet temperature °C	512.82	199.42	444.64
	Inlet pressure MPa	6.944	6.861	1.866
LT side	Flow rate kg/s	36.689	22.478	26.560
	Inlet temperature °C	185.74	67.17	89.14
	Inlet pressure MPa	20.490	20.572	10.245

Results of the Recuperator Designs

Items		Supercritical Turbine	Brayton CO2 Gas Turbine	
		RHX-1	RHX-2	RHX
Width × Length m/module		0.26×1.0	0.26×1.0	0.26×1.0
Height	m/module	6.31	4.24	4.54
Weight	ton/module	11.76	7.90	8.46
Total weight	ton	141	95	102
Heat transfer capacity MW		11.755	5.261	9.777
Pressure loss ratio (dP/Pinlet)	HT side %	0.196	0.247	2.29
	LT side %	0.075	0.031	0.226

The total weight of recuperators for the supercritical CO₂ gas turbine cycle becomes twice that for the Brayton CO₂ gas turbine cycle.

CONCLUSIONS

Applications of two CO_2 GT cycles, i.e., "20 MPa supercritical CO_2 GT cycle" and "10 MPa Brayton CO_2 GT cycle" to the solar thermal power plant of 100 MW thermal have been compared in terms of their design features. The solar power plant consists of the beam-down sun-beam collecting system, sun-energy receiver provided with aluminum heat transfer and storage blankets and the CO_2 gas turbine with 650° C turbine inlet temperature. The designs were conducted for the flow schemes with the same number of compressors.

The following conclusions were obtained.

- 1. The values of the cycle thermal efficiencies are 48.9% for the supercritical CO_2 GT cycle and 45.3% for the Brayton CO_2 GT cycle. Therefore, the former cycle shows a 3.6% advantage.
- 2. Compressor aerodynamic designs are more difficult for the former cycle than for the latter cycle, especially in the bypass compressor design.
- 3. No distinct difference exists in the turbine designs between both the cycles.
- 4. With respect to recuperators, the recuperator weight for the CO_2 GT cycle becomes twice of the Brayton CO_2 GT cycle.

ACKNOWLEDGEMENT

Authors are grateful to Chairman F. Urano and Vice-chairman H. Mimura of Smart Energy Solutions Association (SESA) for their research cooperation in the supercritical CO_2 gas turbine.