Corrosion Testing of High Temperature Materials in Supercritical Carbon Dioxide

Henry Saari, Curtis Parks, Brennan Maybee
Carleton University

Ryan Petrusenko
International Safety Research

Kourosh Zanganeh
CanmetENERGY, Natural Resources Canada

The 4th International Symposium
Supercritical CO₂ Power Cycles
September 9-10, 2014, Pittsburgh, Pennsylvania
Organisational experience
- Carleton University and Natural Resources Canada
- 100 MW\textsubscript{e} and 10 MW\textsubscript{e} designs, 250 kW\textsubscript{th} test loop

Corrosion test rig
- Design
- Commissioning

Corrosion testing
- Initial testing performed
- Weight change results
- Metallography
Organisational Experience

- Mechanical and Aerospace Engineering, Carleton University
 - Strong history of research and teaching in gas turbine technology

- Natural Resources Canada (NRCan), CanmetENERGY
 - Ottawa Research Centre
 - R&D in clean fossil fuel technologies
 - Pilot-scale research facility

- Design and development of advanced semi-closed and closed gas turbine cycles
Organisational Experience

100 MW_e plant 2006/07 to 2010/11 (full-scale power plant)

10 MW_e turbomachinery 2011/12
Organisational Experience

250 kW\textsubscript{th} pilot-scale Brayton cycle loop 2012/13 to 2015/16
Corrosion Testing

- Material compatibility in S-CO$_2$
- Identified as a technical concern
 - Design
 - Corrosion allowance
 - Geometry and property changes
 - Materials selection
 - Piping, heat exchangers, turbomachinery, valves
- “Minimal” data exist, especially for long term exposure and “real” conditions
Corrosion Test Rig Design Features

- Based on MIT test rig
- 700 °C at 25 MPa or 750 °C at 15 MPa
- Continuous flow (0.5-15 L/hr) and static capability
- 12.7 mm diameter test coupons
- Alumina specimen boat
- Near-autonomous operation
- Passive and active safety systems
- TSSA certification
Corrosion Test Rig
Commissioning and Calibration

- Initial runs at 15 MPa and 2.0 L/hr
- 200 °C/hr to 600 °C
- Metal and S-CO₂ temperatures measured
 - Single-point probe (T-2)
 - Profile probe (T-13 to T-18)
Commissioning and Calibration

- Heat shields added
 - Crimped to thermocouples
 - Perforated for flow
- Increased temperature
- Increased temperature uniformity along heated zone
Commissioning and Calibration

- Furnace set points determined
 - Operation at 15 and 25 MPa
 - 400 to 750 °C in 50 °C increments
 - Maximum temperature variation approximately 10 °C
 - For 550 °C testing: 549-557 °C
 - For 700 °C testing: 696-706 °C
Test Design

- 3 alloys: 316SS, IN718, IN738 (and IN625 riders)
 - 12.7 mm diameter samples
 - High surface area to volume ratio
- 550 and 700 °C, 15 and 25 MPa
 - 100, 250, 500, 1000, 1500 hrs
 - Samples weighed and photographed, one removed
- Analyses
 - Surface analysis
 - Weight change
 - SEM and EDS
Test Matrix

<table>
<thead>
<tr>
<th>Temp (°C)</th>
<th>316SS</th>
<th></th>
<th>IN718</th>
<th></th>
<th>IN738</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>15 MPa</td>
<td>25 MPa</td>
<td>15 MPa</td>
<td>25 MPa</td>
<td>15 MPa</td>
<td>25 MPa</td>
</tr>
<tr>
<td>550</td>
<td>1500</td>
<td></td>
<td>1500</td>
<td></td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td></td>
<td>1500 + 1500</td>
<td>1500 + 1500</td>
<td></td>
<td>1500 + 1500</td>
<td></td>
</tr>
<tr>
<td>550</td>
<td></td>
<td></td>
<td>1500</td>
<td></td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td>1500</td>
<td></td>
<td>1500</td>
<td></td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td>1500 + 1500</td>
<td>1500 + 1500</td>
<td></td>
<td>1500 + 1500</td>
<td></td>
</tr>
<tr>
<td>700</td>
<td></td>
<td></td>
<td>1500</td>
<td></td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>

S-CO₂ Flow →

Test Results

Supercritical CO₂ Corrosion Test Results

- Solid lines: 15 MPa/1500 hrs + 25 MPa/1500 hrs
- Dashed lines: 25 MPa/1500 hrs
- Dotted lines: IN625 riders

- 550 °C
- 316SS and IN718 had similar weight gains
- IN738 had approximately half the weight gain
- IN625 had intermediate weight gains
- Logarithmic rate laws
- Some dependence on pressure

- 700 °C
- IN718 and IN738 had similar weight gains
- 316SS had dramatically higher weight gains
- IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
- Parabolic rate laws for IN718 and IN738
- Linear rate law for 316SS
- Some dependence on pressure
Supercritical CO₂ Corrosion Test Results

- Solid lines: 15 MPa/1500 hrs + 25 MPa/1500 hrs
- Dashed lines: 25 MPa/1500 hrs
- Dotted lines: IN625 riders

- 550 °C
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure

- 700 °C
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Test Results

Supercritical CO₂ Corrosion Test Results

- Solid lines: 15 MPa/1500 hrs + 25 MPa/1500 hrs
- Dashed lines: 25 MPa/1500 hrs
- Dotted lines: IN625 riders

- 550 °C
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure

- 700 °C
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Test Results

Supercritical CO₂ Corrosion Test Results

- Solid lines: 15 MPa/1500 hrs + 25 MPa/1500 hrs
- Dashed lines: 25 MPa/1500 hrs
- Dotted lines: IN625 riders

- 550 °C
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure

- 700 °C
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Supercritical CO$_2$ Corrosion Test Results

- Solid lines: 15 MPa/1500 hrs+25 MPa/1500 hrs
- Dashed lines: 25 MPa/1500 hrs
- Dotted lines: IN625 riders

550 °C
- 316SS and IN718 had similar weight gains
- IN738 had approximately half the weight gain
- IN625 had intermediate weight gains
- Logarithmic rate laws
- Some dependence on pressure

700 °C
- IN718 and IN738 had similar weight gains
- 316SS had dramatically higher weight gains
- IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
- Parabolic rate laws for IN718 and IN738
- Linear rate law for 316SS
- Some dependence on pressure
Supercritical CO\text{2} Corrosion Test Results

- 550 °C
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure
- 700 °C
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Supercritical CO₂ Corrosion Test Results

- **550 °C**
 - 316SS and IN718 had similar weight gains.
 - IN738 had approximately half the weight gain.
 - IN625 had intermediate weight gains.
 - Logarithmic rate laws.
 - Some dependence on pressure.

- **700 °C**
 - IN718 and IN738 had similar weight gains.
 - 316SS had dramatically higher weight gains.
 - IN625 had lower weight gain (prior exposure, relative to 550 °C testing).
 - Parabolic rate laws for IN718 and IN738.
 - Linear rate law for 316SS.
 - Some dependence on pressure.
Test Results

Supercritical CO₂ Corrosion Test Results

- **550 °C:**
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure

- **700 °C:**
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Test Results

Supercritical CO₂ Corrosion Test Results

- **550 °C**
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure

- **700 °C**
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Supercritical CO₂ Corrosion Test Results

- 550 °C
 - 316SS and IN718 had similar weight gains
 - IN738 had approximately half the weight gain
 - IN625 had intermediate weight gains
 - Logarithmic rate laws
 - Some dependence on pressure

- 700 °C
 - IN718 and IN738 had similar weight gains
 - 316SS had dramatically higher weight gains
 - IN625 had lower weight gain (pre-exposure, relative to 550 °C testing)
 - Parabolic rate laws for IN718 and IN738
 - Linear rate law for 316SS
 - Some dependence on pressure
Test Results

- SEM on samples tested at 700 °C for 1500 hrs
- 316SS: unstable, duplex oxide layer
- IN718 and IN738: thin, stable oxide layer
 - Some evidence of intergranular corrosion
Summary

- 316SS comparable to others at 550 °C
- 316SS at 700 °C
 - linear oxide growth kinetics
 - unprotective duplex oxide layer
- IN718 and IN738 at 700 °C
 - parabolic oxide growth kinetics
 - thin and stable oxide layer
 - some evidence of intergranular corrosion
Questions?

Acknowledgements

- NRCan funding
- Chris Gareau and Dave Faguy (NRCan, rig assembly)
- Carlos Salvador (NRCan, rig integration)
- J.J. Wang (Carleton University, metallography)