The Effect of Temperature on the sCO₂ Compatibility of Conventional Structural Alloys

B. A. Pint and J. R. Keiser Corrosion Science and Technology Group

Materials Science and Technology Division Oak Ridge National Laboratory Oak Ridge, TN 37831-6156

Research sponsored by DOE, Office of Fossil Energy Office of Coal and Power R&D (R. Dennis, program manager; B. White, project monitor)

Acknowledgments

M. Howell - senior technician
M. Stephens, T. Lowe - specimen preparation/handling
T. Jordan - metallography
ORNL craft workers

Alloy coupons: Haynes International Special Metals Allegheny-Ludlum Sumitomo Metals Sandvik (Kanthal) Capstone Turbines Siemens Plansee

Research sponsored by: U. S. Department of Energy, Office of Coal and Power R&D, Office of Fossil Energy

Different temperature targets

- Uncertainty about ranges for sCO₂ applications
- Fossil energy interest for power generation coal/natural gas: replace steam with closed cycle
- At the highest temperatures, little data available

Temperature effect investigated

- Varied temperature at 20MPa: 650°-750°C
- Three 500h isothermal experiments
- Second: effect of pressure (FY15)

Range of alloys exposed

- ~30 alloy coupons exposed plus SiC ceramic

1200°C steam exposures:

Alumina-former:

Chromia-former:

2h

48 h

Non-protective iron oxide: Type 304L stainless steel

ORNL sCO₂ rig finished in May

- ORNL design (team: 100+ years of experience)

Baseline created at 700°C 1bar

10 representative alloys were focus of metallography 1bar: dry air, CO_2 , $CO_2+0.15O_2$, $CO_2+10\%H_2O$

200bar mass change by %Cr

Many alloys exhibited a low mass gain at 650°-750°C Low Cr steels were heavily attacked 18-25%Cr alloys performed similarly

Typical Fe-rich oxide on Gr.91

Similar oxide forms in dry air at 700°C, steam, etc. Outer Fe_2O_3/Fe_3O_4 layer Inner (Fe,Cr)₃O₄ layer

Rather than thin-protective Cr-rich scale (650°C,air)

Grade 91: Fe-9Cr-1Mo

347HFG, 700°C: more protective Thick duplex oxide formed at 650°C in sCO₂ Only a few nodules formed at 700°C

347HFG (fine grain) Fe-18Cr-9Ni<1Nb

650°C sCO₂: hard to form Al_2O_3

Higher mass gain for alumina-forming alloys Some unable to form alumina

Low mass gain for all Ni-Cr alloys

Low mass gain for >20%Cr Fe-base alloys

Model superalloy coating example

650°C - not protective as expected

700°C - thinner scale

Faster AI transport in alloy at higher temperature

Cast Ni-15Cr-12Al+Y,Hf

700°C sCO₂: better Al₂O₃

Low mass gain for many specimens Lower mass gain for some alumina-forming alloys A few specimens lost mass (?)

Thinner Al₂O₃ at 700°C Confirms the higher mass gains at 650°C 700°C: All alumina-forming alloys performed better CM247 superalloy - 1%Hf no strong C reaction

light microscopy of polished cross-sections

Similar trends at 750°C

Alumina-forming alloys typically lower than chromia-forming alloys Higher mass gain for alloy 282 specimen

Ni-Cr alloys similar behavior

Increasing mass gain with increasing temperature A few odd results (mass loss for alloy X at 700°C)

Thicker Cr₂O₃ at 700°C

As expected, higher temperature leads to thicker reaction product

Thoughts

More characterization needed of current results Better understand some unusual results

Concern:

Degradation by C penetration through Cr₂O₃ (McCoy 1965 at 1bar) Need to evaluate longer times + ex-situ ductility Al₂O₃ thought to be better barrier to C ingress Pre-oxidation may assist in Al₂O₃ formation

Future work

Next work: effect of pressure, lower temperatures

effect on ex-situ mechanical properties: 2015

Second rig for impurity effects (measure in + out) 1 bar results for CO_2+O_2 or H_2O : minor effects

Summary

Completed three 500h tests at 200 bar CO₂ 650°-750°C (1200°-1380°F) Higher temperatures of interest for fossil energy Wide range of alloys exposed Companion 1bar tests at 700°C

Similar to other studies:

Typical FeCr and FeCrNi alloys form thick scales Higher alloyed FeCr + NiCr alloys formed thin protective scales

Also:

Alumina-forming alloys more protective >650°C At 500h, pressure effect (1 vs 200bar) minimal