

Tensile Properties of Structural Materials Aged in High Temperature S-CO₂ Environment (Paper #32)

Ho Jung Lee, Hyunmyung Kim, Changheui Jang*

Sep. 10, 2014

Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST) Rep. of Korea

*chjang@kaist.ac.kr

Contents

1. Introduction

2. Materials & Experimental

3. Results & Discussion

- Corrosion resistance in S-CO₂
- Changes in tensile properties after exposure to S-CO₂
- 4. On-Going Tests
- 5. Summary

Introduction – Korean PGSFR

□ Application of supercritical CO₂ power cycle to SFR

- Operating condition of Korean PGSFR S-CO₂ cycle
 - \succ Brayton cycle using S-CO₂ at 500 550 °C (200 bar)

Key components

Intermediate heat exchanger (IHX), Intermediate-loop, and pipes

✤ Materials issues

- > Candidate materials: Fe-base austenitic steels, Ni-base alloys, FM steels
- Corrosion property, long-term stability and mechanical property in S-CO₂

Prototype Gen IV SFR (PGSFR)

- Pool-type reactor
- 150 MWe
- Core in/out T : 390/545 °C
- Liquid sodium coolant
- Supreheated steam Rankine cycle
 - \rightarrow S-CO₂ cycle as an alternative option

▲ SFR IHX by Diffusion Bonding

Introduction – Material Feasibility of SCO₂ Cycle

□ Material Compatibility: feasibility of S-CO₂ Cycle to SGR

Evaluation of corrosion property in S-CO₂

- Corrosion test in S-CO₂ environments (550, 600, and 650°C / 200bar for up to 3000h)
- Effects of Cr content, grain size, minor alloying elements at various testing temperatures

* Evaluation of aging effects of long-term exposure to S-CO₂

- Exposure of mini-sized tensile specimens to S-CO₂ environment during corrosion tests
- Assessment of microstructural evolution at near the surface and within the matrix
- Assessment of changes in tensile properties compared to the un-aged specimen

Materials & Experimental - Materials

□ Candidate materials: selected commercial alloys

- > Fe-base austenitic steels : 310, 316H, 316LN, 347H, 800HT
- > Ni-base alloys : 600, 625, 690
- > Ferritic-martensitic steel : G91

	Fe	Ni	Cr	C	Мо	Mn	Al	Ті	Si	Cu	Others
SS 310S	Bal.	19.1	24.7	0.06	-	0.8	-	-	0.6	-	-
SS 316H	Bal.	10.7	17.3	0.05	2.1	0.6	-	-	0.6	0.2	0.2 Co
SS 316LN	Bal.	13.9	18.9	0.03	2.7	1.9	-	-	0.6	-	0.2 N
SS 347H	Bal.	8.6	18.3	0.07	-	1.2	-	-	0.6	-	0.4 Nb
Incoloy 800HT	Bal.	33.6	21.0	0.06	0.2	0.9	0.48	0.55	0.4	0.1	0.003 B 0.05 Co
Inconel 600	9.3	Bal.	16.1	0.08	-	0.3	0.16	0.20	0.3	0.02	0.002 B
Inconel 625	4.6	Bal.	22.6	0.02	9.8	.04	0.3	0.35	-	-	3.1 Nb 0.15 Ta
Inconel 690	8.3	Bal.	28.4	0.02	-	0.2	0.3	0.26	0.2	0.01	0.002 B < 0.01 Nb
G91	Bal.	0.1	9.3	0.08	0.9	0.3	0.03	-	0.3		0.19 V 0.08 Nb

▲ Measured by Inductively Coupled Plasma (ICP) method

Materials & Experimental - Materials

Average grain size of test materials (EBSD analysis)

SS 316LN (63 µm)

SS 347H (10 µm) →FG

Inconel 600 (21 µm)

60µm

Materials & Experimental – Test Setup

□ S-CO₂ corrosion test facility

- > Once-through, two autoclaves (Alloy 625)
- > CO_2 : 99.999 % purity liquid phase CO_2 with flow rate of 5 ml/min
- > Furnace heating for 5 h \rightarrow maintain the temperature \rightarrow furnace cooling

▲ Geometry and dimensions of (a) coupon and (b) mini-sized tensile specimen (in mm) and the photograph of installed specimens on alumina boat

7

Results - Corrosion resistance in S-CO₂

Corrosion resistance in S-CO₂ : 550, 600 and 650°C (200bar) for 1000h

- > Fe-base austenitic steels : Fe-base with various Cr content (17-25 wt.% Cr)
 - 310S, 347H, and 800HT : relatively good up to 650°C → high Cr (25 Cr in 310S), small grain size (18Cr in FG-347H), high Ni and Cr (33 Ni and 21 Cr in 800HT)
 - 316H and 316LN : depend on exposure temperature → significant weight gain of 316H at 650°C and 316LN above 600°C
- > Ni-base alloys : superior corrosion resistance up to 650°C
- 9Cr FMS : poor corrosion resistance even at 550°C (Fe-base with low Cr content)

Results – Surface oxides formed in S-CO₂

Surface oxide morphology exposed in S-CO₂ for 1000h

Results – Surface oxides formed in S-CO₂

□ Surface oxide morphology exposed in S-CO₂ for 1000h

SS 316H

550°C

600°C

650°C

Lat

Results – Surface oxides formed in S-CO₂

□ Surface oxide morphology exposed in S-CO₂ for 1000h

➢ For Incoloy 800HT, Inconel 600, Inconel 625, Inconel 690, Cr₂O₃ is mainly formed in all test conditions → Superior corrosion resistance

Results – Tensile Property after exposure in S-CO₂

Changes in UTS (at RT) after exposure to S-CO₂

- > Mini-size tensile specimen (0.5t) contain the corroded surface and aged matrix
- Fe-base austenitic steels : significant hardening for 800HT, small changes for 316H (+), 347H (+) and 310S (-), 316LN (-)
- > **Ni-base alloys :** Significant hardening for Alloy 625, little change for Alloy 600 & 690
- > **G91 FMS :** loss of strength as exposure Temp. increase

 \blacktriangle The changes in tensile properties at room temperature after exposure in S-CO₂

Nuclear & High Temperature

Results – Tensile Property after exposure in S-CO₂

□ Changes in Elongation (at RT) after exposure to S-CO₂

- > Fe-base austenitic steels : generally, loss of ductility.
 - ✓ Large decrease for 800HT, 316H, 316LN.
- > Ni-base alloys : Little change for Alloy 600 & 690, large decrease for Alloy 625
- > **G91 FMS :** loss of ductility as exposure Temp. increase

▲ The changes in tensile properties at room temperature after exposure in S-CO₂

Microstructure of SS 316H after exposure to S-CO₂

14

□ Microstructure of SS 316LN after exposure to S-CO₂

- Formation of Cr-rich carbide near the surface and at grain boundaries after exposure at 650°C
- > At 550 and 600°C, carburization is limited

S-CO₂ at 550°C for 1000h

➤ The formation of carbides is less extensive than SS 316H

Near Surface

In the

Matrix

▲ Microstructure evolution of SS 316LN after exposure in S-CO₂ at 550, 600 and 650°C (200bar) for 1000h 15 15

□ Microstructure of Incoloy 800HT after exposure to S-CO₂

- Significant formation of Cr-rich carbide near the surface and at grain boundaries even after exposure at 550°C
- > Fine and needle-like ppt within the grains

▲ Microstructure evolution of Incoloy 800HT after exposure in S-CO₂ at 550, 600 and 650°C (200bar) for 1000h 16

□ Microstructure of Alloy 625 after exposure to S-CO₂

- Formation of Ni, Mo, and Nb-rich phases near the surface after exposure at 600°C
- Grain boundary carbides after exposure to 650°C

					-
	4	3	2	1	
	0	0.08	0	1.0	С
9	15.9	5.4	8.5	22.3	Cr
9	6.9	1.8	2.9	5.5	Fe
.0	67.0	58.7	61.5	56.4	Ni
3	8.3	21.2	17.8	11.2	Мо
Э	1.9	12.8	9.2	3.4	Nb
9	6.9 67.0 8.3 1.9	1.8 58.7 21.2 12.8	2.9 61.5 17.8 9.2	5.5 56.4 11.2 3.4	Fe Ni Mo Nb

▲ Microstructure evolution of Inconel 625 after exposure in S-CO₂ at 550, 600 and 650°C (200bar) for 1000h 17 Nuclear & High Temperature Materials Lab

Microstructure of Alloy 690 after exposure to S-CO₂

- > Carbides are present at the grain boundary and within the grains in asreceived condition
- > Carbide formation is not substantial even after exposure at 650°C

Near Surface

On-Going Tests

> S-CO₂ corrosion tests up to 3000h (550, 600, and 650°C/200bar)

- Evaluate the oxidation kinetics, oxide layer evolution
- Characterize the carburization behaviors
- Develop life prediction models
- Microstructure and tensile property after exposure to S-CO₂
 - Evaluation of microstructural evolution after long-term exposure to S-CO₂
 → TEM/SAD analysis of 1000h tested specimens is in progress
 - Evaluation of changes in tensile property after 3000h exposure
 - Evaluation of creep properties in S-CO₂ environments (600 °C)
 - \rightarrow Evaluate the effects of aging in S-CO₂ on mechanical properties

On-Going Tests

□ Creep in S-CO₂ environment

Evaluation of creep behaviors in S-CO₂

- Dead-weight type creep test setups
- Measure creep strain (LVDT) and creep rupture time at 600 °C

Summary

1. The weight gains

- FMS >> Fe-base austenitic steels > Ni-base alloys.
- At 550°C, both Fe-base austenitic steels and Ni-base alloys show a good corrosion resistance => maybe OK for SFR S-CO₂ environment.

2. Surface oxides

- In the case of Fe-base austenitic steels, the surface oxides consist of the mixture of polygonal shaped Fe oxide and nodular (550 and 600°C) or platelet (650°C) shaped Cr-rich oxide.
- **3.** The corrosion resistance of **SS 316H** and **SS 316LN** are strongly dependent on test temperatures resulted from the formation of thick outer Fe oxide.

4. The tensile properties after exposure to S-CO₂

- ➤ Incoloy 800HT and Alloy 625 → large hardening and loss of ductility probably due to the formation of Cr-rich carbides and Ni, Mo, and Nb-rich phases
- SS 310S, SS 347H, Alloy 600, and 690 → changes in tensile properties such as UTS and elongation are rather small in all test conditions.

Energy for Earth !!

Thank you!

