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 Approximately 280 GW of waste heat is estimated to 
be expelled annually by 
◦ Could result in $70-$150 billion in savings if salvaged 
◦ On this scale, any efficiency increase will result in large 

savings 
 SCO2 offers unique properties as a working fluid for a 

cycle 
◦ Relatively low temperatures for supercritical state 
◦ Unique challenges for pressures and viscosities 
 High pressure ranges, 4-5 times max pressure in typical diesel 

engines 
 Viscosity poses problems for sealing, dry gas mechanical seals 

needed 
 Relatively recent hardware innovations and green 

energy initiatives have sparked interest in 
applications 
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 It has recently been recognized that a large 
quantity of waste heat is generated annually, 
and thus represents a large opportunity for 
energy savings 

 With burgeoning research in cycles which 
utilize super critical carbon dioxide as a 
unique working fluid; herein an optimized 
thermodynamic cycle development was 
proposed that would center around a novel 
expansion device for extracting power from 
the SCO2 working fluid 
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 Passive and active components in the system 
 Passive: Heat exchangers  
◦ Well formulated design criteria readily available, 

especially for single phase flow 
 Active: Pump/Compressor and Expander 
◦ Pump/Compressor technology has existed for 20 

years for dealing with super-critical carbon dioxide 
◦ Expander design has become an industry goal for 

such processes 
 Expander design 
◦ High specific power goals  
◦ Compatibility with SCO2 
 

9/10/2014 5 
4th Intl. SCO2 Power Cycles 

Symposium, Pittsburgh, PA, 2014 



 The original engine design stemmed from a 
Polygon engine project sponsored by Butte 
Industries, Inc. [1,2] while the current 
evolution of the design stems from the works 
published in [3-5] 
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Figure 1a. Polygon Expansion Engine Design Concept [2]  

 
Figure 1b. Polygon Expansion Engine Design Concept [2]  
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 The Mollier diagram for the expansion 
process in conjunction with the waste heat 
recovery cycle is shown below in Figure 2 
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Figure 2. Mollier Diagram for SCO2 Waste Heat Recovery Cycle [2] 
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 The pertinent thermodynamic state points for 
the expansion engine are summarized in 
Table 1 
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State Points              
(cf. Figure 2) 

T (K) P (MPa) Density 
(kg/cu m) 

Enthalpy 
(kJ/kg) 

Entropy     
(kJ-kg-K) 

1 308 12.4 776.61 278.19 1.23 

2 319 20.0 810.49 289.38 1.24 

3 417 20.0 338.83 413.32 1.86 

4 473 20.0 258.82 597.79 2.05 

5 436 12.4 176.78 577.23 2.08 

6 328 12.4 537.76 353.29 1.47 

 

Table 1. Pertinent Thermodynamic State Points for SCO2 Waste Heat Recovery Cycle [2] 

 

EXPANSION 
PROCESS 
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 Cycle efficiency analysis 
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Figure 3. Cycle efficiency based on temperature  drop over heat exchanger [2].  
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 Specifications 
◦ SCO2 Mass Flow Rate approx. 30 gm/s = 238 lb/hr 
◦ 300 RPM operating speed 
◦ 0.8~1.1 kW power generation 

 The modular design shown in Figure 1 allows the 
ability to have multiple engines stacked in series 
as shown below in Figure 4 
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Figure 4. Stacked Polygon Expansion Engine Design Concept [3,4].   
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 A key component of the system design was 
the modeling of chamber pressure as this 
would drive all design modifications 

 The modeling was centered around a 
polytropic model which spurred a new 
methodology for determining the polytropic 
index as detailed in [5] 

 The chamber thermodynamic behavior is 
detailed in Figure 5 through Figure 7 below 
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Figure 5. Pressure Volume Diagram of 
Expansion Process [5].  

 

Figure 6. Pressure Enthalpy Diagram of 
Expansion Process [5]. 

 
Figure 7. Temperature Entropy Diagram of 
Expansion Process [5]. 
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 P,T, ρ as a function of stroke during 
expansion process 
◦ Note: SCO2 ρ remains below critical state during 

expansion, while p & T remain above critical state 
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Figure 8. Pressure vs. Stroke [5]. 

 
Figure 9. Temperature vs. Stroke [5]. 

 
Figure 10. Density vs. Stroke [5]. 
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 The nominal polytropic index was found per 
[5]  
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Table 2. Nominal Polytropic Index Iteration Procedure [5]. 
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 The manufacturing process selection was 
crucial to obtaining a design that could be 
produced 

 An initial trade study was performed to 
determine the feasibility of using silicon 
carbide (SiC) due to low material costs, 
availability, and potential mechanical 
properties but was ultimately turned down 
due to lack of material standardization and 
machining costs involved when produced 
with the required strength specifications 
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 Due to the relatively low operating 
temperatures, various steels were chosen to 
meet loading requirements and provide 
thermal expansion uniformities 

 The present design is shown in Figure 11 as 
an assembly rendering 
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Figure 11.  Assembly Rendering of SCO2 Expansion Engine 
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 Figure 12 through Figure 16 show detailed 
drawings of the primary components 
comprising the expansion engine design 
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Figure 12. Detailed Drawing and Bill of Materials for Combustion Chamber Subassembly 
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Figure 13. Detailed Drawing and Bill of Materials 
for Disc Subassembly 
 

Figure 14.  Detailed Drawing and Bill of Materials 
for Disc Crankshaft Subassembly 
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Figure 15. Detailed Drawing and Bill of Materials 
for Pushrod Subassembly 

 
Figure 16. Detailed Drawing and Bill of Materials 
for Piston Rod Subassembly 
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 Finite element analysis using NX software was 
employed to predict the stresses in the major 
components of the SCO2 Polygon Expansion 
Engine 

 Figure 17 through Figure 19 show typical 
results  
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Figure 17. FEA Stress Analysis for Disc Assembly 

 
Figure 18. FEA Stress Analysis for Crankshaft 
Assembly 

 

Figure 19. FEA Stress Analysis for Piston-head Assembly 
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 Detailed precision hand calculations were also 
performed at the machine component level 
based on the practices outlined in Shigley and 
Mischke [6]. Relevant findings are highlighted 
below in Table 3. 
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Engine 
Component 

Stress Mode Max. Stress 
(ksi) 

F.S. 
(Static/Fatigue) 

Wrist Pin Bending 98 2.04/1.53 

Connecting Rod Compression 27 2.90/2.53 

Center Shaft Compression 48 2.93/1.50 

Disc Bending 16 4.57/4.95 

 

Table 3 – Relevant Stress Analysis Results 
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 This paper summarizes the thermodynamic modeling, 
machine deign layout and component level stress 
analysis of a Polygon Expansion Engine for use in a 
SCO2 Waste Heat Recovery Cycle 

 Working design 
◦ High specific power 
◦ Modular design for expandability 

 Issues 
◦ Appropriate bearing choices 
◦ Good lubrication but unbounded by appropriate bearings 

 Bottom line: Viable design with a few unbounded 
issues 

 Future work will include  
◦ Analysis and design of lubrication system for the engine 
◦ Engaging venture capitalists and National Labs in order to 

sponsor the funding required to fabricate a proto-type 
working engineering model of the engine 
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