Exceptional service in the national interest

Sandia Progress on Advanced Heat Exchangers for SCO2 Brayton Cycles

The 4th International Symposium – Supercritical CO2 Power Cycles

September 9-10, 2014, Pittsburgh, Pennsylvania

*Carlson, M. D, Kruizenga, A. K., Schalansky, C., Fleming, D. F.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Overview – SCO2 Cycle Exchangers

Several supercritical carbon dioxide (SCO2) cycles proposed

- Proposed as an alternative to steam and organic Rankine systems
- Offer high efficiency, compact turbomachinery, fluid compatibility
- Recompression Brayton cycles are well-matched to nuclear applications

Proposed SCO2 cycles are highly recuperated to enhance efficiency

- Recuperation between 1 and 5 times the net electrical power
- Require a combination of high temperature and pressure capability
- Will be a significant portion of demonstration and production cycles

Key requirements are pressure containment and cost scalability

- Several types can contain high pressures (PFHE, PCHE, S+T)
- Current SCO2 test systems use PCHEs almost exclusively
- Cost and size scaling suggest S+T units are impractical, despite wide use

Heat Exchanger Developments at SNL

- Partnering with Vacuum Process Engineering to understand PCHEs
- Developing cast metal heat exchangers (CMHEs) to reduce cost

HEAT EXCHANGER BACKGROUND

Supercritical CO₂ Brayton Cycle

E. J. Parma, S. A. Wright, M. E. Vernon, D. D. Fleming, G. E. Rochau, A. J. Suo-Anttila, A. Al Rashdan, and P. V. Tsvetkov, "Supercritical CO2 Direct Cycle Gas Fast Reactor (SC-GFR) Concept," Sandia National Laboratories, Albuquerque, NM, USA, SAND 2011-2525, May 2011.

Recuperation in Brayton Cycles

Dyreby, J., S. Klein, G. Nellis, and D. Reindl. (2012). Development of Advanced Models for Supercritical Carbon Dioxide Power Cycles for use in Concentrating Solar Power Systems. National Renewable Energy Laboratory.

Early Air CBC Recuperators

H. U. Frutschi, Closed-cycle gas turbines : operating experience and future potential. New York: ASME Press, 2005.

Scalable SCO2 CBC Systems

J.P. Gibbs, P. Hejzlar, & M.J. Driscoll. (2006). *Applicability of Supercritical CO2 Power Conversion Systems to GEN IV Reactors* (Topical Report No. MIT-GFR-037) (p. 97). Cambridge, MA: Center for Advanced Nuclear Energy Systems MIT Department of Nuclear Science and Engineering.

Heat Exchanger Requirements

Sandia

National

Approximate Cost Scaling

$$Cost = C_{ESDU}F_{mat}F_{p}F_{i}UA_{sp}P_{elec}$$

C_{ESDU} is the UA-specific cost value [\$/(kW/K)]

F_{mat} is a material cost factor

F_i is an adjustment for inflation

UA_{sp} is the cycle power-specific UA [kW/(K-MWe)]

 P_{elec} is the cycle power level [MWe]

ESDU, "Selection and Costing of Heat Exchangers," Engineering Sciences Data Unit, ESDU 92013, Dec. 1994.

 F_{P} is a pressure cost factor

DEVELOPMENTS FOR PCHES

The Printed Circuit Heat Exchanger

Heat Exchanger Core

Diffusion Bonding

Core and Manifold Assembly

Partnership with VPE on PCHEs

Understand Near-Term Option

- Material and Bond Evaluation
 - Possible materials
 - Bonding defects
 - Develop U-stampable PCHEs
- PCHE Performance Testing
 - Pressure containment
 - Thermal-hydraulic testing
 - Thermal Fatigue testing
- Techno-Economic Optimization
 - Design -> Fabrication -> Testing

Review of 2014 Turbo Expo Results

engineering strain

Analysis of the Failed Sample

- Likely due to visible trench
 - Matched on both surfaces
 - Foreign object inclusion (Carbonaceous material)
- Remedies in next blocks
 - Changed plate vendors
 - Tweaked bonding procedure

Two Sets of Satisfactory Samples

316 Diffusion Bond Tensile Tests

PCHE Design Software

DEVELOPMENTS FOR CAST METAL HEAT EXCHANGERS (CMHES)

SNL Cast Metal Heat Exchangers

Proposal: Directly cast heat exchanger core geometries.

Key Concept: Using inter-connected flow passages provides essential mechanical integrity to casting cores.

Benefits: • Reduce cost by as much as a factor of 5

- Reduce lead-time caused high-temperature joining techniques (welding, brazing, bonding)
- Allow for innovative channel geometry
- Greatly expand material possibilities
- Easily incorporate surface features

Transitioning to Casting

Ē

J. T. Black, R. A. Kohser, and E. P. DeGarmo, DeGarmo's materials and processes in manufacturing. Hoboken, NJ: Wiley, 2008.

CMHE Industrial Precedent

M. J. Donachie, Superalloys a technical guide. Materials Park, OH: ASM International, 2002. <u>http://www.fedtechgroup.com/advanced_materials/lbs/lbs_cast.html</u> <u>http://www.ergaerospace.com/project-gallery.htm</u> <u>http://www.alveotec.fr/nos-actualites/exemples-d-applications-mousses-metalliques_55.html</u>

Industrial Precedent

Handbook of Cellular Metals: Production, Processing, Applications. Weinheim: Wiley-VCH, 2002.

CMHE Recuperator Geometries

Requires plate stamping

Dry-fit multiple casting cores

Unit-Cell Heat Exchanger

BACKUP SLIDES

Current SCO2 CBC HXers

G. O. Musgrove, C. Pittaway, D. Shiferaw, and S. Sullivan, "Tutorial: Heat Exchangers for Supercritical CO2 Power Cycle Applications," San Antonio, Texas, USA, 03-Jun-2013.

Commercial Unit Potential

Key Requirements:

- ✓ High Pressure
- ✓ High Temperature
- ✓ Corrosion Resistant
 - ✓ High Reliability
- ✓ Compact Geometry
- ✓ Scalable to 150 MWe

$$\beta = \frac{A_s}{V} = \frac{4\phi}{d_h}$$

Plate-Fin 200 to 800 [m²/m³]

Coil-Wound 10 to 300 [m²/m³]

Shell and Tube 10 to 200 [m²/m³]

Printed Circuit 200 to 5000 [m²/m³]

Shell and Plate 100 to 600 [m²/m³]

PCHE Thermal-Hydraulic Performance

Carlson, M. (2012). *Measurement and Analysis of the Thermal and Hydraulic Performance of Several Printed Circuit Heat Exchanger Channel Geometries* (Master of Science). University of Wisconsin - Madison, Madison, WI.

HEAT EXCHANGER COMPACTNESS

Surface Area Density:
$$\beta = \frac{A_s}{V} = \frac{4\phi}{d_h}$$

Potential Applications

Coal / Nuclear Steam Rankine

GenIV Nuclear Sodium Fast Reactor

MARINE Rolls-Royce WR-21 Type 45 Destroyer

Refrigeration Commercial, Cryogenic

VEHICULAR Honeywell AGT1500 M1 Abrams Tank

Solar Turbines Mercury 50