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Overview

Background information

e Computational model for a direct s-CO, receiver
* Design a of a 3 MW,, cavity receiver
 Thermal performance evaluation

e Summary and conclusions



Solar power tower

Ref (5)
Future cost of generating electricity using solar tower technology can be reduced by:

1) Lowering the cost of the heliostats
2) Including thermal storages with the systems to increase the capacity factor

3) Increasing the operational temperature and employing more efficient power cycles



Supercritical CO, as the heat transfer and working fluids

Ref (6)

Carbon dioxide seems like a proper
replacement for current heat transfer
fluids (HTFs), i.e. oil, molten salt, and
steam.

Oil has low maximum operating
temperature limit.

Molten salt requires freeze protection
units.

Steam requires complex control systems.

The main challenge about utilizing s-CO, as
the HTF is the high operating pressure.



Compact heat exchanger technology

e Compact heat exchangers have already been extensively used for cooling the electronics. The

high heat transfer rate in these heat exchangers is associated with the large area density (heat
transfer area).

e Compact heat exchangers which are manufactured by diffusion bonding can tolerate very high
pressures, i.e. more than 60 MPa.

Cross-section of a printed circuit heat exchanger
Ref (7)



Thermal resistance network model
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e Bulk fluid temperature can be found as:

k
m .
Touike, s (Lk) = Tf i + mxC, Zl q(l, i)
i=

where [ represents the row number, and k is the grid number in the axial direction.

e The equivalent thermal resistance is given as:

T (k) — Tywik,r (L, )
q(l k)

Req (l) k) =
e Writing the energy balance around grid k leads to:

—Ti(k—1) + q+

S Touik,r (L k)
Req(l, k)

m

1

2+ Rcond Zm] T](k) - T](k + 1) = Rcond
=1 1"

Therefore, a system of linear equations is obtained for n unknown junction temperatures.



e Laminar flow (Re<=2300)
Nu = 8.235 (1 — 2.0421 a + 3.0853 a? — 2.4765 a3 + 1.0578 a* — 0.1861 a®)
a is the aspect ratio <=1

e Turbulent flow (Re>=5000)

% (Re — 1000) Pr

1 2
" z - Je =025 <1.8logRe = 1.5)
1+127 (Pr-1) &

e Transition region (2300<Re<5000)

Nusppo — Nuz300
5000 — 2300

Nu = Nngoo + (Re - 2300)

e Pressure drop at the entrance and exit of the channels:

CpV?
AP =
2

where C is taken as 0.5 for the entrance, and 1 for the exit.

e The friction loss inside the channel:
L
fprv?

AP
2




Model validation



Direct s-CO, receiver in a recompression Brayton cycle
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Material selection

Inconel 625, which is a nickel based alloy, is selected as the heat exchanger material because of its

good corrosion resistance in high temperature s-CO, environment.

Nickel. ..o e 580 min,
CRIOMIUIML. et e e e e eaeeas 20.0-23.0
£ PP RUUNUIt 1 ) 1 ) V.
Molybdenum..........oooviiviiiiiiiiiiiiiien 2. 8.0-1000
Niobium (plus Tantalum)..........cccovvviviiivinieiennnn..3.15-4015

L Ty o7 1 P 0.10 max.
Y e T 1ot 0.50 max.
S Lo 0.50 max.
Phosphorus. ... ..., 0.015 max.
SUHUL. e 0.015 max.
ATUMINUIN. ..o e 0.40 max.
TRAMIUIML. .o 0.40 max.
Cobalt"........... T e e e 1.0 max.

Melting range is 1290-1350 C, and maximum
operating temperature is 982 C.

Temp Mean Li'neir Therlrla.ll b El-.a'ctl:itfalc
oC Expansion Conductivity Resistivity
pm/ pme°C W/me°C p{)-cm
-157 - 7.2 -
-129 - 7.5 -
-73 - 8.4 -
-18 - 9.2 -
21 - 9.8 129
38 - 10.1 130
93 12.8 10.8 132
204 13.1 12.5 134
316 13.3 14.1 135
427 13.7 15.7 136
538 14.0 17.5 138
649 14.8 19.0 138
760 15.3 20.8 137
871 15.8 228 136
927 16.2 - -
982 - 25.2 135
1093 - - 134
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Geometric optimization

e Design variables

1) Number of rows 3<m<10
2) Hydraulic diameter 0.5mm < Dy, < 3mm
3) Horizontal distance between the channels Imm < tr < 5mm

e Objective functions

1) Pressure drop

2)RR = (Tsurface,n(l;an_Tinlet) % 10000

K
W cm?

e Constraints

1) Mechanical strength of the system (Checked by ASME pressure vessel code)
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Pareto front of two objective optimization

Dy = 2.8 mm, t = 5mm, number of rows = 3
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Optimization results

S-CO, temperature inside the
channels

Surface temperature
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Design of a 3MW,, receiver

3.6m

2.7 m
waet

0.6 1.2m

Tilt angle of the receiver is 35 °

Total number of panels that is required for a 3 MW, receiver to heat s-CO, from 530°C to 700°C

at 20 Mpa is:
3000 _

n =—=14
panels 213
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Convective heat loss

e Natural convection (Clausing method)

Qu = Polco CpAa(Tc —Ts)

Vp = \/g B(T.—Tw)ly,V, =05 [(Cgvb)z + (C4VWind)2]0'5

Qc = hconv Acav (Tsurface - Tref)

2
1 T. T
Nu = 0.082 (Gr.Pr)3 [—0.9 + 2.4 < S“;f““) ~- 0.5 ( SWf““) 1

o0 TOO
Qc = 0Qq

e Forced convection (Siebers, D. and Kraabel, J., 1984)
Heat
Nusorceq = 0.287 Red® Pri/3 exchangers

 Combined convective heat transfer coefficient is given by:

hmix = Anaturar + hforced

* For each panel the convective heat loss is calculated by:

Qconv,loss,i = hmix,i A; (Ti - Tbulk)

Stagnant Zone

?sfagna nf zone

Te

Ttui}

Convective
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ST

Tm

Refractory
walls
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Radiative heat loss (model developed by Teichel)

—
PV A AV AV AN AN AN AN Y 4
i

0 _ i 4 4
Qrad,thermal,i,j - gj,therm Eitherm O Ai Fi,j,therm ((1 - fO—)Lstep,Ti) Ti - (1 - fO—/lstep,Tj) T] )

~ 4 4
+€j,solar €isolar A; Fi,j,solar (fO—lstep,TiTi o fo_/lstep'TjTj )

Qrad,solar,i,j

= fO—)Lstep,TsunFi,j,solar Ai Esolar,i Esolar,j (Fluxsolar,i - Fluxsolar,j)

+ (1 - fO—)Lstep,Tsun) Ai Fi,j,therm €itherm €j,therm (Fluxsolar,j - Fluxsolar,i)

Qrad,i,j = Qrad,thermal,i,j + Qrad,solar,i,j
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Energy balance on cavity surfaces

1) Active surfaces:
Fluxi Ai = anin,i + Qconv,loss,i + Qrad,loss,i

2) Passive surfaces:

0=0+ Qconv,loss,i + Qrad,loss,i

N
if Qrad,loss,i = Ai Z[hrad,therm,i,j (Ti - T])] + Qrad,solar,i
j=1

N .
_ Ai 2j=1[hrad,therm,i,jT'] - Qrad,solar,i + Aihmix,inulk
- N

A; Zj=1(hrad,therm,i,j) + Aihmix,i

i

3) Corners: Flux; A; =0+ Qconv,loss,i + Qrad,loss,i

_ Fluxi Ai + Ai Z?:l[hrad,therm,i,jTj] - Qrad,solar,i + Aihmix,inulk
A; Z?I=1(hrad,therm,i,j) + Aihmix,i

i
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Solar field

Field parameters

Location
Dagget, CA
Heliostats
Number of heliostats 92
Width 8.84m
Height 7.34m
Reflectivity 0.88
Receiver
Tower height 115m
Tilt angle of the 350
aperture
Aperture width 3.6m
Aperture height 2.7m
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Flux density distribution (KW /m?)

without aiming strategy

March 215t , noon

with aiming strategy
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Flux density distribution (*
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Wind speed profile for Dagget (TMY3 data)

v 0.14
— = (—) (Duffie, J. A., Beckman, W.A., 2006)
Vz Z3
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Temperature distribution inside the cavity (°C)

Black—Surface Temperature Red—Fluid temperature
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Other important information
e Mean temperature of s-CO2 leaving the receiver: 691°C

e Maximum surface temperature: 843°C (Maximum allowable temperature for Inconel 625 is
982°C.

* Receiver efficiency:

Nree = Qtransfered to the fluid x 100 = 81.22 %

Qreceived by the receiver

e Temperatures of the passive surfaces:

Top surface 169°C
Bottom surface 170°C
Left surface 173°C

Right surface 167°C




Summary and conclusion

A direct s-CO, receiver was designed based on the principles of compact heat exchangers.

The receiver is expected to heat s-CO, from 530°C to 700°C. The geometry of the receiver was
determined using multi-objective the Pareto based optimization approach by the simultaneous
minimization of the unit thermal resistance and the pressure drop.

A 3MW,,, cavity receiver was designed using 14 individual panels.

The heliostat field was designed, and the corresponding flux distribution on the receiver surface
was obtained for March 215,

The radiative and convective heat transfer models were developed, and the bulk fluid and surface
temperatures were obtained.

The results showed that the s-CO, reached the design temperature while the surface
temperatures remained below the maximum temperature limit of Inconel 625. The receiver
efficiency was obtained as 81.22%, which is highly promising.

The efficiency can be further improved by optimizing the geometry of the cavity receiver.
Considering the appropriate thermal and mechanical performance of the CHEs, they can be
seriously considered for the next generation of high temperature pressurized solar receivers.
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Thank you for your attention,
Questions?
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