

Development of a Direct Supercritical Carbon Dioxide Solar Receiver Based on Compact Heat Exchanger Technology

Saeb M. Besarati, D. Yogi. Goswami, Elias K. Stefanakos

Overview

- Background information
- Computational model for a direct s-CO₂ receiver
- Design a of a 3 MW_{th} cavity receiver
- Thermal performance evaluation
- Summary and conclusions

Solar power tower

Ref (5)

Future cost of generating electricity using solar tower technology can be reduced by:

1) Lowering the cost of the heliostats

2) Including thermal storages with the systems to increase the capacity factor

3) Increasing the operational temperature and employing more efficient power cycles

Supercritical CO₂ as the heat transfer and working fluids

- Carbon dioxide seems like a proper replacement for current heat transfer fluids (HTFs), i.e. oil, molten salt, and steam.
- Oil has low maximum operating temperature limit.
- Molten salt requires freeze protection units.
- Steam requires complex control systems.
- The main challenge about utilizing s-CO₂ as the HTF is the high operating pressure.

Compact heat exchanger technology

- Compact heat exchangers have already been extensively used for cooling the electronics. The high heat transfer rate in these heat exchangers is associated with the large area density (heat transfer area).
- Compact heat exchangers which are manufactured by diffusion bonding can tolerate very high pressures, i.e. more than 60 MPa.

Cross-section of a printed circuit heat exchanger $_{\text{Ref}\,(7)}$

Thermal resistance network model

$$n = 200, q = \frac{Q}{n}, l = \frac{L}{n}$$

$$R_{base} = \frac{t}{k_s \times \frac{W}{2} \times l}$$
$$R_{wall} = \frac{\frac{b}{2}}{k_s \times l \times \frac{W-a}{2}}$$

$$R_{cond} = \frac{l}{k_s \times \frac{(W \times H - a \times b)}{2}}$$
$$R_{b,conv} = \frac{2}{h \times a \times l}$$

$$R_{w,conv} = \frac{1}{h \times b \times l}$$

• Bulk fluid temperature can be found as:

$$T_{bulk,f}(l,k) = T_{f,in} + \frac{m}{\dot{m} \times C_p} \sum_{i=1}^k q(l,i)$$

where l represents the row number, and k is the grid number in the axial direction.

• The equivalent thermal resistance is given as:

$$R_{eq}(l,k) = \frac{T_j(k) - T_{bulk,f}(l,k)}{q(l,k)}$$

• Writing the energy balance around grid k leads to:

$$-T_{j}(k-1) + \left[2 + R_{cond} \sum_{l=1}^{m} \frac{1}{R_{eq}(l,k)}\right] T_{j}(k) - T_{j}(k+1) = R_{cond} \left[q + \sum_{l=1}^{m} \frac{T_{bulk,f}(l,k)}{R_{eq}(l,k)}\right]$$

Therefore, a system of linear equations is obtained for *n* unknown junction temperatures.

• Laminar flow (Re<=2300)

 $Nu = 8.235 (1 - 2.0421 \alpha + 3.0853 \alpha^2 - 2.4765 \alpha^3 + 1.0578 \alpha^4 - 0.1861 \alpha^5)$

 α is the aspect ratio <=1

• Turbulent flow (Re>=5000)

$$Nu = \frac{\frac{f_c}{2} (Re - 1000) Pr}{1 + 12.7 (\Pr^2 - 1) \sqrt{\frac{f_c}{2}}}, f_c = 0.25 \left(\frac{1}{1.8 \log Re - 1.5}\right)^2$$

• Transition region (2300<Re<5000)

$$Nu = Nu_{2300} + \frac{Nu_{5000} - Nu_{2300}}{5000 - 2300} \ (Re - 2300)$$

• Pressure drop at the entrance and exit of the channels:

$$\Delta P = \frac{C\rho V^2}{2}$$

where C is taken as 0.5 for the entrance, and 1 for the exit.

• The friction loss inside the channel:

$$\Delta P = \frac{f \frac{L}{D} \rho V^2}{2}$$

Model validation

Direct s-CO₂ receiver in a recompression Brayton cycle

 $P_5 = 20 \text{ Mpa}, T_5 = 700^{\circ}\text{C}, T_1 = 35^{\circ}\text{C}$

Under Optimized Condition
$$\begin{split} \eta &= 48.6 \ \% \\ T_4 &= 530 \\ h_5 - h_4 &= 213 \frac{kJ}{kg} \end{split}$$

Mass flow rate: 1 kg/s

Heat flux: 500 kW/m^2

W_{hx}=0.6 m

Material selection

 Inconel 625, which is a nickel based alloy, is selected as the heat exchanger material because of its good corrosion resistance in high temperature s-CO₂ environment.

Nickel	58.0 min.
Chromium	
Iron	5.0 max.
Molybdenum	8.0-10.0
Niobium (plus Tantalum)	
Carbon	0.10 max.
Manganese	0.50 max.
Silicon	0.50 max.
Phosphorus	0.015 max.
Sulfur	0.015 max.
Aluminum	0.40 max.
Titanium	0.40 max.
Cobalt ^a	1.0 max.

Melting range is 1290-1350 C, and maximum operating temperature is 982 C.

Temp °C	Mean Linear Expansion ^a μm/ μm•°C	Thermal Conductivity ^{b,c} W/m•°C	Electrical Resistivity ^c μΩ-cm
-157	-	7.2	-
-129	-	7.5	-
-73	-	8.4	-
-18	-	9.2	-
21	-	9.8	129
38	-	10.1	130
93	12.8	10.8	132
204	13.1	12.5	134
316	13.3	14.1	135
427	13.7	15.7	136
538	14.0	17.5	138
649	14.8	19.0	138
760	15.3	20.8	137
871	15.8	22.8	136
927	16.2	-	-
982	-	25.2	135
1093	-	-	134

Geometric optimization

- Design variables
 - 1) Number of rows $3 \le m \le 10$ 2) Hydraulic diameter $0.5 mm \le D_h < 3mm$ 3) Horizontal distance between the channels $1mm \le t_f < 5mm$
- Objective functions

1) Pressure drop 2) RR = $\left(\frac{T_{surface,mean} - T_{inlet}}{Q'}\right) \times 10000 \frac{K}{W \text{ cm}^2}$

Constraints

1) Mechanical strength of the system (Checked by ASME pressure vessel code)

Pareto front of two objective optimization

 $D_h = 2.8 \text{ mm}, t_f = 5 \text{mm}, \text{number of rows} = 3$

Optimization results

S-CO₂ temperature inside the channels

Surface temperature

Design of a 3MW_{th} receiver

Total number of panels that is required for a 3 MW_{th} receiver to heat s-CO₂ from 530°C to 700°C at 20 Mpa is:

$$n_{panels} = \frac{3000}{213} \cong 14$$

Convective heat loss

• Natural convection (Clausing method)

$$Q_{a} = \rho_{\infty} u_{\infty} c_{p} A_{a} (T_{c} - T_{\infty})$$

$$V_{b} = \sqrt{g \beta (T_{c} - T_{\infty}) L_{a}}, V_{a} = 0.5 [(C_{3} V_{b})^{2} + (C_{4} V_{wind})^{2}]^{0.5}$$

$$Q_{c} = h_{conv} A_{cav} (T_{surface} - T_{ref})$$

$$Nu = 0.082 (Gr. Pr)^{\frac{1}{3}} [-0.9 + 2.4 \left(\frac{T_{surface}}{T_{\infty}}\right) - 0.5 \left(\frac{T_{surface}}{T_{\infty}}\right)^{2}$$

$$Q_{c} = Q_{a}$$

• Forced convection (Siebers, D. and Kraabel, J., 1984)

 $Nu_{forced} = 0.287 \, Re_w^{0.8} \, Pr^{1/3}$

• Combined convective heat transfer coefficient is given by:

 $h_{mix} = h_{Natural} + h_{forced}$

• For each panel the convective heat loss is calculated by:

$$Q_{conv,loss,i} = h_{mix,i} A_i (T_i - T_{bulk})$$

Radiative heat loss (model developed by Teichel)

$$\dot{Q}_{rad,thermal,i,j} = \varepsilon_{j,therm} \varepsilon_{i,therm} \sigma A_i \hat{F}_{i,j,therm} \left(\left(1 - f_{0-\lambda_{step},T_i} \right) T_i^4 - \left(1 - f_{0-\lambda_{step},T_j} \right) T_j^4 \right) \\ + \varepsilon_{j,solar} \varepsilon_{i,solar} A_i \hat{F}_{i,j,solar} \left(f_{0-\lambda_{step},T_i} T_i^4 - f_{0-\lambda_{step},T_j} T_j^4 \right)$$

$$\begin{split} \dot{Q}_{rad,solar,i,j} &= f_{0-\lambda_{step},T_{sun}} \hat{F}_{i,j,solar} A_i \, \varepsilon_{solar,i} \, \varepsilon_{solar,j} \left(Flux_{solar,i} - Flux_{solar,j} \right) \\ &+ \left(1 - f_{0-\lambda_{step},T_{sun}} \right) A_i \, \hat{F}_{i,j,therm} \, \varepsilon_{i,therm} \, \varepsilon_{j,therm} \left(Flux_{solar,j} - Flux_{solar,i} \right) \end{split}$$

$$\dot{Q}_{rad,i,j} = \dot{Q}_{rad,thermal,i,j} + \dot{Q}_{rad,solar,i,j}$$

Energy balance on cavity surfaces

1) Active surfaces:

$$Flux_i A_i = Q_{gain,i} + Q_{conv,loss,i} + Q_{rad,loss,i}$$

2) Passive surfaces:

3) Corners:

$$0 = 0 + Q_{conv, loss, i} + Q_{rad, loss, i}$$

$$if \ Q_{rad,loss,i} = A_i \sum_{j=1}^{N} \left[h_{rad,therm,i,j} \left(T_i - T_j \right) \right] + \dot{Q}_{rad,solar,i}$$

$$T_{i} = \frac{A_{i} \sum_{j=1}^{N} \left[h_{rad,therm,i,j} T_{j} \right] - \dot{Q}_{rad,solar,i} + A_{i} h_{mix,i} T_{bulk}}{A_{i} \sum_{j=1}^{N} (h_{rad,therm,i,j}) + A_{i} h_{mix,i}}$$

$$Flux_i A_i = 0 + Q_{conv,loss,i} + Q_{rad,loss,i}$$

$$T_{i} = \frac{Flux_{i} A_{i} + A_{i} \sum_{j=1}^{N} [h_{rad,therm,i,j}T_{j}] - \dot{Q}_{rad,solar,i} + A_{i}h_{mix,i}T_{bulk}}{A_{i} \sum_{j=1}^{N} (h_{rad,therm,i,j}) + A_{i}h_{mix,i}}$$

Solar field

Field parameters Location Dagget, CA Heliostats Number of heliostats 92 Width 8.84 m Height 7.34 m Reflectivity 0.88 Receiver Tower height 115 m Tilt angle of the 35° aperture Aperture width 3.6 m Aperture height 2.7 m

Flux density distribution (kW/m^2)

without aiming strategy

with aiming strategy

March 21st , noon

122.63	179.35	250.55	312.17	339.19	343.34	314.97	237.43	154.21	96.53
		41	2.53	523.37	54	13.88	420.66		T
23	238.51 489.67		9.67	622.50	64	43.47	497.30	209	9.13
			8.63	683.32	69	95.41	534.74		
27	7.35 -	54	6.12	690.81	69	91.61	528.84	243	3.07
		50	8.24	641.71	63	35.88	484.57		
241	89	43	2.99	546.13	53	39.22	410.58	210).72
118.36	177.94	255.44	322.87	348.59	345.38	312.43	237.81	156.94	98.18

Wind speed profile for Dagget (TMY3 data)

Temperature distribution inside the cavity (°C)

520	664	618 573	681 <mark>624</mark>	742 678	741 678	680 623	613 570	603	444
620 581		771 680		833 719	843		774 681		08
		744 638		800 667	807 670		745 638	5	74
683		699 587		744 602	747 604		698 587	664	
638	701 588		476 603	746 603		696 586	6	24	
72	7	750 641		806 669	805 669		741 636	7	02
685		780 684		843 724	841 722		769 678	6	65
508	661	620 573	686	747	742	679 622	614 570	610	448

Black→Surface Temperature Red→Fluid temperature

Other important information

- Mean temperature of s-CO2 leaving the receiver: 691°C
- Maximum surface temperature: 843°C (Maximum allowable temperature for Inconel 625 is 982°C.
- Receiver efficiency:

$$\eta_{rec} = \frac{q_{transferred to the fluid}}{q_{received by the receiver}} \times 100 = 81.22 \%$$

• Temperatures of the passive surfaces:

Top surface	169°C
Bottom surface	170°C
Left surface	173°C
Right surface	167°C

Summary and conclusion

- A direct s-CO₂ receiver was designed based on the principles of compact heat exchangers.
- The receiver is expected to heat s-CO₂ from 530°C to 700°C. The geometry of the receiver was
 determined using multi-objective the Pareto based optimization approach by the simultaneous
 minimization of the unit thermal resistance and the pressure drop.
- A 3MW_{th} cavity receiver was designed using 14 individual panels.
- The heliostat field was designed, and the corresponding flux distribution on the receiver surface was obtained for March 21st.
- The radiative and convective heat transfer models were developed, and the bulk fluid and surface temperatures were obtained.
- The results showed that the s-CO₂ reached the design temperature while the surface temperatures remained below the maximum temperature limit of Inconel 625. The receiver efficiency was obtained as 81.22%, which is highly promising.
- The efficiency can be further improved by optimizing the geometry of the cavity receiver. Considering the appropriate thermal and mechanical performance of the CHEs, they can be seriously considered for the next generation of high temperature pressurized solar receivers.

Thank you for your attention, Questions?

References

(1) World in Transition Towards Sustainable Energy Systems. German Advisory Council on Global Change (WBGU), 2003.

(2) "Torresol Energy." [Online]. Available: http://www.torresolenergy.com/TORRESOL/image-

library/en?initdate=&enddate=&categoria=cw4cb8173de9630.

(3)"Fresnel heat systems." [Online]. Available: http://fresnelheatsystems.com/.

(4) "DESERTEC-UK." [Online]. Available: <u>http://www.trec-uk.org.uk/resources/pictures/stills4.html</u>.

(5) "Solar Two Power Plant." [Online]. Available: http://www.global-greenhouse-warming.com/solar-central-power-towers.html.

(6) S. A. Wright, T. M. Conboy, and G. E. Rochau, "Overview of Supercritical CO2 Power Cycle Development at Sandia National Laboratories," in *Supercritical CO2 Power Cycle Symposium.*, 2011.

(7) V. Dostal, "A supercritical carbon dioxide cycle for next generation nuclear reactors," Massachusetts Institute of Technology (MIT), 2004.

(8) N. Lei, "The thermal characteristics of multilayer minichannel heat sinks in single-phase and two-phase flow," The University of Arizona, 2006.

(9) S. H. Teichel, "Modeling and Calculation of Heat Transfer Relationships for Concentrated Solar Power Receivers," 2011.

(10) . M. Besarati and D. Yogi Goswami, "Analysis of Advanced Supercritical Carbon Dioxide Power Cycles With a Bottoming Cycle for Concentrating Solar Power Applications," *J. Sol. Energy Eng.*, vol. 136, no. 1, p. 011020, Nov. 2013.

(11) [V. Gnielinski, "New equations for heat and mass transfer in turbulent pipe and channel flow.pdf," *Int. Chem. Eng.*, vol. 16, no. 2, pp. 359–368, 1976.
(12) I. E. Idelchik, *Handbook of hydraulic resistance*. CRC Press, 1994.

(13) Besarati, Saeb M., D. Yogi Goswami, and Elias K. Stefanakos. "Optimal heliostat aiming strategy for uniform distribution of heat flux on the receiver of a solar power tower plant." *Energy Conversion and Management* 84 (2014): 234-243.

(14) Besarati, Saeb M., and D. Yogi Goswami. "A computationally efficient method for the design of the heliostat field for solar power tower plant." *Renewable Energy* 69 (2014): 226-232.

