

Global Climate Change-the Quantifiable Sustainability Challenge

Supercritical CO₂ Power Cycles 4th Annual Symposium

Frank Princiotta

Princiotta.frank@epa.gov

Director, Air Pollution Prevention & Control Division Office of Research And Development. US Environmental Protection Agency

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development

National Risk Management Research Laboratory September 9, 2014

Climate Change; the Sustainability Elephant in the Room

Advances in Global Change Research 38 Frank Princiotta <u>Gabal Clim</u>ate Change - The Technology Challenge Princiotta (*Ed.*)

Frank Princiotta Editor

Change -

Challenge

ADVANCES IN GLOBAL CHANGE RESEARCH 38

Global Climate

The Technology

In order to avoid the potentially catastrophic impacts of global warming the current 3% CO_2 global emission growth rate must be transformed to a 1 to 3% declining rate, as soon as possible. This will require a rapid and radical transformation of the world's energy production and end use systems. The current generation of energy technologies are not capable of achieving the level of mitigation required. Next generations of renewable, low carbon generation and end use technologies will be needed.

This book quantifies the mitigation challenge. It then considers the status of key technologies needed to protect the planet from serious climate change impact. Ourrent and emerging technologies are characterized for their mitigation potential, status of development and potential environmental impacts. Power generation, mobile sources, industrial and building sectors are evaluated in detail. The importance and unique challenges for rapidly developing countries, such as China and India are discussed. Current global research and development efforts for key technologies are discussed. It is concluded that it will be necessary to substantially upgrade and accelerate the current worldwide RDD&D effort on both emerging energy technologies and those enabling technologies needed to improve mitigation effectiveness and economics. It will also be necessary to carefully evaluate the potential environmental characteristics ofnext generation technologies to avoid unacceptable health and ecological impacts.

Finally, given the monumental technological challenge associated with transforming the world's energy system, an assessment of geoengineering options are evaluated, since if successfully deployed, they have the potential to allow more time for the necessary energy system transformation.

Global Climate Change -The Technology Challenge

D Springer

Just published in JA&WMA 9/2014; Climate Change the Quantifiable Sustainability
 Challenge> <u>http://www.tandfonline.com/doi/full/10.1080/10962247.2014.923351</u>

Major Issues Discussed

- Is the planet warming & is humanity the cause? (IPCC: Yes is the answer)
- What are the fundamental drivers
- What will it take to avoid catastrophic climate change in terms emission reductions via low C technology globally and nationally
- Note cultural changes & geological engineering options may be
 needed but are not covered due to time constraints

IPCC Fifth Assessment Report (AR5); Summary for Policymakers September 2013

-Warming of climate system unequivocal, since 1950s many changes unprecedented over decades to millennia; atmosphere & ocean warmed, amounts of snow & ice diminished, sea level has risen

- *Extremely likely that human influence dominant cause of warming since mid-20th century*; evident from increasing GHG concentrations, positive radiative forcing, observed warming, and understanding of the climate system

-Concentrations of CO₂, methane, & nitrous oxide increased to unprecedented levels in last 800,000 years. The ocean has absorbed about 30% of emitted CO₂, causing ocean acidification

-Each of last 3 decades successively warmer at Earth's surface than any preceding decade since 1850. In Northern Hemisphere, 1983–2012 *likely warmest 30-year period of last 1400 years*

GEPA GHG Forcing Needed to Explain Observed Warming

 1)Despite Studies, Frameworks & Treaties CO2 Emissions & Atm. Concentration Continue to Grow
 2) Emission Growth Rate Consistent with Most Extreme IPCC Scenarios

EPA United States Environmental Protection Agency Environmental Protection Agency

Jan 2011 Warming Projections by The Royal Society (UK): Global Warming Relative to Pre-Industrial for the IPCC A1FI Emissions United States Environmental Protection Scenario, Using an Ensemble of Model Simulations

©2011 by The Royal Society

Betts R A et al. Phil. Trans. R. Soc. A 2011;369:67-84

Royal Society: Global Warming in a "4°C World"

1 2 3 4 5 6 7 8 10 12 14 16

Agency

- "Enormous adaptation challenges in the agricultural sector, with large areas of cropland becoming unsuitable for cultivation..."
- "...this world would ... rapidly be losing its ecosystem services, owing to large losses in biodiversity, forests, coastal wetlands...supported by an acidified and potentially dysfunctional marine ecosystem."
- "...drought and desertification would be widespread, with large numbers of people experiencing increased water stress...."
- "Human and natural systems would be subject to increasing levels of agricultural pests and diseases, and increases in the frequency and intensity of extreme weather events. ..."

The Macro View of Humanity's Sustainability Challenge

United States Environmental Protection Agency

F. Princiotta 2010

United States US vs. World CO₂ Emission Reductions: Base Case & 3 Aggressive Mitigation (CO₂ only) Cases:

Assumed aggressive mitigation: 2005 to 2012:capped; 2005 to 2020:-17%,2005to 2030:-34%;2005 to 2050:-83%

2008 Per Capita CO₂ Emissions by Country Versus That Required to Limit Warming to 2 ⁰C

2008 Per Capita CO₂ Emissions by Country Versus That Required to Limit Warming to 2 ⁰C

2008 Per Capita CO₂ Emissions by Country Versus

Environmental Protect Phat Required by 2050 to Limit Warming to 2 ° C

2008 Per Capita CO₂ Emissions by Country Versus ction That Required to Limit Warming to 2 ⁰ C

Industrialized Countries' Per Capita Emissions Unsustainable Globally

What Can Be Done to Move Humanity To a Sustainable Path?

- Develop/utilize low carbon/low resource intensive technologies; transformational technologies appear necessary
- Societies Makes Fundamental Changes
- For climate change, modify Earth's solar radiation balance or remove CO₂ from atmosphere to compensate for GHG emissions, i.e., geoengineering

IEA Energy Technology Perspectives; a Global Perspective (2010)

- Mandate by G-8 Leaders and Energy Ministers
- Analyzed Blue scenario to limit warming to ~ 2.5 C; this requires 2050 emissions to be 1/2 of 2005 values (~2% annual reduction for 45 years)
- They concluded:

"We are facing serious challenges in energy sector"

"A global revolution is needed in ways that energy is supplied and used"

"The Blue scenarios require urgent implementation of unprecedented and far reaching new policies in the energy sector"

IEA CO2 Projections: Baseline and Blue (50% reduction 2050 from 2007) Scenarios

Source: IEA Energy Technology Perspectives 2010

For Global 50% CO₂ Reduction Scenario (Blue, IEA Environmental Protection ETP 2010); New & Advanced Technologies Needed

United States Environmental Protection Additional **Annual** capacity needed in global power generation sector for IEA **Blue 50% Reduction Scenario**

EPA The three key CCS Technologies

Agency

CCS Projected to Play Key Role; However Formidable Challenges

- Capture technologies in various stages of development; energy penalty 20 to 30%
- Retrofit with CCS difficult; challenging requirements include: space, water & proximity to sequestration sites
- Pre-combustion/gasification technology, closest to commercial, can not be readily retrofitted
- The most productive role for CCS in the US may be for new coal & gas-fired units; retrofits may be needed in China and India
- Underground sequestration unproven at required scale; long term stability, safety, environmental and legal issues unresolved
- In order to fulfill the requirements of the Blue Scenario 900,000 Mw(e) of CCS needed by 2050

Large Scale Power Plant CCS Projects Planned or Under Construction in U.S. and Canada

Project	Private-Sector Project Leader	Fuel	Location	Size (Mw)	DOE Funding (Millions Dollars)	Planned Start Date	Technology	Readily Retrofitted	Storage
Kemper County	Mississippi Power/Southern Co.	Coal	Kemper County, Miss.	582	270	2015	IGCC	No	EOR
Texas Clean Energy	Summit Power Group	Coal	Ector County, Tex.	400	450	2015	IGCC	No	EOR
Boundary Dam	Sask Power	Coal	Estunam, <i>Canada</i>	110	N/A	2016	Amine	Yes	DSA
FutureGen 2.0	FutureGen Industrial Alliance	Coal	Meredosia, III.	200	1000	2017	Oxy Fuel	Yes	DSA
Hydrogen Energy California	SCS Energy	Pet coke	Kern County, Calif.	300	408	2017	IGCC	No	EOR
W.A. Parish Plant	NRG Energy	Coal	Thompsons, Tex.	60	154	2017	Amine	Yes	EOR
Bow City	BC P&L	Coal	Bow City, <i>Canada</i>	500- 1000	N/A	2017	Amine	Yes	EOR

Evaluating a U.S. mitigation strategy

- Modeling performed with MARKAL model
 - U.S. EPA ORD's 9-region MARKAL model/database; such models they do not attempt to predict, they generate credible scenarios consistent with input assumptions
 - Baseline scenario:
 - Calibrated to Annual Energy Outlook 2010 through 2035
 - *Hypothetical* GHG mitigation scenario:
 - Selected energy system-wide limit on CO₂ emissions: 50% reduction by 2050 from 2005 levels

SEPA For U.S. a Credible 50% CO₂ Reduction Scenario by United States Environmental Protection Agency 2050, Mt CO₂

For U.S. Power Generation a Credible 50% CO₂ Reduction Scenario by 2050, PJ

United States IEA Estimate of RD&D Funding Gap to Meet Blue Scenario; by Technology

	Annual investment in RD&D needed to achieve the BLUE Map scenario outcomes in 2050	Current annual public RD&D spending	Estimated annual RD&D spending gap
	(USD million) ¹	(USD million) ²	(USD million)
Advanced vehicles (includes EVs, PHEVs + FCVs; energy efficiency in transport)	22 500 – 45 000	1860	20 640 – 43 140
Bioenergy (biomass combustion and biofuels)	1 500 – 3 000	740	760 – 2 260
CCS (power generation, industry, fuel transformation)	9 000 – 18 000	540	8 460 – 17 460
Energy efficiency (industry) ³	5 000 – 10 000	530	4 470 – 9 470
Higher-efficiency coal (IGCC + USCSC) ⁴	1 300 – 2 600	850	450 – 1 750
Nuclear fission	1 500 – 3 000	4 030	05
Smart grids	5 600 – 11 200	530	5 070 – 10 670
Solar energy (PV + CSP + solar heating)	1 800 – 3 600	680	1 120 – 2 920
Wind energy	1 800 – 3 600	240	1 560 – 3 360
Total across technologies	50 000 - 100 000	10 000	40 000 – 90 000

Source: IEA Energy Technology Perspectives 2010

Annual Funding for Manhattan Project, Apollo Program, and DOE Energy Technology R&D Program

FY 2012 US Military Spending Greater Than the Next Ten Countries Combined

Presentation Summary

- Population growth & developmental pressures spawned by increasing demand for energy & resource intensive goods, foods & services are driving exponential growth in GHG emissions
- The developing world is moving toward the unsustainable energy/resource intensive path pioneered by the developed world
- If GHG emissions will continue to grow at 2 to 3% annually for decades> yielding warming of 4 C as soon as 2065 (6 C over land)
- Per capita CO₂ emissions must reduce from 5 (2013) to ~1 tonne/person by 2050; US currently at 17, China at 7 (2013) & growing
- IEA: "A global revolution is needed in ways that energy is supplied and used"

- Major technology advances necessary. Power generation & mobile source sectors; carbon capture and storage, renewables, nuclear reactors, and low emission vehicles are critical technologies.
- Current research program woefully underfunded
- Geoengineering, although problematic, offers the possibility of buying us time to allow necessary energy infrastructure/cultural changes
- Although a transformational change in the energy sector is necessary, it may not be sufficient. Cultural changes aimed at reducing humanity's resource/energy intensive footprint may be needed
- In June 2013, President Obama announced Climate Action Plan with Three Major Components: Cut U.S. Carbon Emissions, Prepare the U.S. for Climate Change Impacts & Lead International efforts on Mitigation & Adaptation

Agency Our Stakeholders Count on Us; They will reap from seeds we sow

Electricity production for 50% CO₂ reduction scenario by Region

United States Environmental Protection Agency

Recent Trends are Deepening the Challenge

- Atmospheric concentration of CO2 approaches 400 ppm, & CO2 (e) ~450 ppm; >2 C warming appears inevitable
- Nature Article (Dec. 2013): Based on new cloud study atmospheric sensitivity to CO2 may be greater than current models assume
- Following the tsunami damage at Fukushima, Japan and Germany are reconsidering their nuclear programs
- United Nations-led negotiations on a new global treaty on climate change have been unproductive
- U.S. budget battles don't bode well for an expanded energy technology program