

EPER ELECTRIC POWER RESEARCH INSTITUTE

Welcoming Address What We Need from New Power Generation

Tom Alley Vice President, Generation 4th International Symposium on Supercritical CO₂ Cycles September 8, 2014

Transformation of the Power System

A Resilient, Flexible, and Connected System Driving a Need for Greater Flexibility

Transformation of the Power System

Role of the Central Generating Fleet

Power Generation Drivers and Externalities

Fuel Availability & Price (Natural Gas)

Renewables

Emissions Constraints

Demand Trends Economic Viability

> Market Drivers

Aging Assets

Coal Retirement Forecast

Drivers

- Demand
- Economics
- Availability/Price of Natural Gas
- Environmental Regulations
 - Mercury and Air Toxics Standards (MATS)

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Reference Case

MATS compliance strategies for U.S. coal-fired generation capacity in the electric power sector

Source: U.S. EIA Annual Generator Report

MATS compliance is driving a large number of plant closures is 2016

Polar Vortex: Fleet Response

- Oil units had record runs
- Fleet required maximum flexibility
- Duel fuel switching
 - liquids were cheaper than gas
 - Delivery issues
- High gas prices gas turndown
- Misalignment between dispatch and demand
- High forced outage rates
 - Fuel curtailments
 - Freezing instrument lines
 - Freezing HRSGs

Event demonstrates the need for fuel diversity

Value of Centralized Generation

- Provides the backbone energy capacity
 - Startup Power
 - Backup Power/Reserves
 - Voltage and Frequency Stability
 - Load Following and Peak
 Power

Central generating capacity is the backbone for maintaining grid

stability and reliability

The Challenge – Your Challenge

Advance the understanding and development of advanced power systems. Systems that are:

- Flexible
- Reliable
- Cost effective and efficient
- Low carbon

Greater Sense of Urgency - While There is Time

...and Low Cost

- Cost is the biggest pressure electric utilities are facing today
- EPRI's Advisory Council is very concerned about the cost impacts of electricity on consumers
- We need new ways to generate power, cleanly and reliably, that will not cause electricity prices to rise

... Low Emissions including CO₂

Are Supercritical CO₂ Cycles the Answer?

Together...Shaping the Future of Electricity

The Challenge – Your Challenge

- Advance the understanding and development of advanced power systems
- Impact of the "Polar Vortex" on the northeast United States showed the importance of having a diverse generating portfolio
- But many of the coal plants that were used during the polar vortex are scheduled to be shut down next year

Key Courner Section to a very complicated Jig saw puzzle

What Do Power Generators Need?

- New technologies to replace the coal plants nearing retirement in the US and Europe & to meet the growing demand for power in developing nations
- These new technologies must offer . . .

...Flexibility

Data from Klaus Kleinekorte, Amprion, German TSO.

European Power Generation Challenges

- RE deployment
 - Up to 30% by 2030
- Fossil flexibility required to support RE variability
- Fuel prices and risk

Hourly PV+Wind Generation (GW)

2011

40

35-

30-

25.

20.

15-

10.

Weak wholesale prices

~36 GW

~0 GW

2012

2013

• Low load factors (e.g., Spain)

Insights from a

Dynamic System

~80 days/yr

variable generation

5% below installed

capacity

Maximum Hourly Ramp ~10 GW

Maximum Hourly

Down Ramp ~7 GV

coal-fired power plants

What we can learn from our international members

Diversity in the Generation Mix is Critical

- Oil units had record runs
- Fleet required maximum flexibility
- Duel fuel switching
 - In some cases liquids were cheaper than gas
 - Delivery issues
- High gas prices resulted in gas turndown
- Misalignment between dispatch and demand
- Availability and reliability of coal and nuclear generation fleet exceed natural gas fired, solar and wind generation
- High forced outage rates
 - Fuel curtailments
 - Freezing instrument lines
 - Freezing HRSGs

Large number of coal plant due to be retired by the end of 2016

The Challenge – Your Challenge

- Develop the technology that will enable the power system of the future to evolve in a manner that is *Flexible, Resilient, Reliable, Efficient, Safe, and Environmentally Responsible.*
- The industry has a low risk tolerance and the risk of failure must be minimized
- Significant financial pressures
- Highly diverse opinions regarding technologies

Diversity in the Generation Mix is Critical

The Challenge – Your Challenge

- Develop the technology that will enable the power system of the future to evolve in a manner that is *Flexible, Resilient, Reliable, Efficient, Safe, and Environmentally Responsible.*
- The industry has a low risk tolerance and the risk of failure must be minimized
- Significant financial pressures
- Highly diverse opinions regarding technologies

Diversity in the Generation Mix is Critical

Power Generation Drivers and Externalities

Fuel Availability & Price (Natural Gas)

Renewables

Emissions Constraints

Demand Trends Economic Viability

> Market Drivers

Aging Assets

Coal Retirement Forecast

Drivers

- Demand
- Economics
- Availability/Price of Natural Gas
- Environmental Regulations
 - Mercury and Air Toxics Standards (MATS)

Source: U.S. Energy Information Administration, Annual Energy Outlook 2014 Reference Case

MATS compliance strategies for U.S. coal-fired generation capacity in the electric power sector

Source: U.S. EIA Annual Generator Report

MATS Compliance driver for large number of retirements in 2016

Distributed Fossil Generation Impact on Local Air Quality

- Sources close to people
- Short stacks
- Cooler flue gas alters plume rise & buoyancy
- Strong impact of local micrometeorology and building topology

