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• >200,000 employees
• Operating in 180 countries• $42.7B Sales (2005)

• $5.2B Operating profit
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Rocketdyne Alignment after UTC Purchase of 
Rocketdyne from Boeing (August 3, 2005)
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Rocketdyne Energy HeritageRocketdyne Energy Heritage
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PWR Rocket / Space Program HeritagePWR Rocket / Space Program Heritage
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• High energy density 
combustion
• 6000º F
• 5000 psia

• Regenerative cooling
• Low metal temperatures
• High system efficiency

• High speed rotating 
equipment
• 36,000 rpm

Rocket Engine Competencies
Applicable to Energy Markets

• Hydrogen technology
• Low cost < $10 per kW thermal

• Unique design capabilities
• Advanced manufacturing 

processes
• Manufacturing and test

• Capacity > 200 GW thermal per 
year

• Rapid prototyping
• Extensive test capability
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Key Rocketdyne Processes
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Approach to Supercritical CO2 
System & Equipment Design
Approach to Supercritical CO2 
System & Equipment Design

• Initiated technical evaluation in 2006 with internal funds

• System modeling / evaluation

• Turbomachinery conceptual design

• Heat exchanger evaluation

• Tools refinement – CFD

• Small contract for Sandia Laboratory on turbomachinery & test 
concepts

• Using supercritical CO2 system knowledge on advanced reactor 
concepts in 2007
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System Modeling / EvaluationSystem Modeling / Evaluation

• Verified preceding wisdom on CO2 cycle
• Literature review: MIT reports
• Select 300 Mwe LMR as baseline
• Power system modeling for efficiency
• Evaluated alternate configurations
• Defined parameters for turbomachinery 

& heat exchangers

• Extended power system modeling other 
power systems
• VHTGR
• Solar thermal power
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Modeling Results: VHTGR Power System StudyModeling Results: VHTGR Power System Study

Plot from: Driscoll, M.J., Report No: MIT-GFR-019, “Interim Topical Report
Supercritical CO2 Plant Cost Assessment”, September 2004, Center for 
Advanced Nuclear Energy Systems, MIT Nuclear Engineering Department

*

*

Supercritical CO2

Helium Brayton
Supercritical Steam 
Single Reheat
Supercritical Steam 
Double Reheat
Subcritical Steam

ChemCad used to model 
supercritical CO2 and helium 
Brayton cycles

GateCycle used to model 
steam cycles
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Not every power system benefits from 
supercritical CO2

Not every power system benefits from 
supercritical CO2
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Solar Power Tower with Supercritical CO2 Cycle

• Rocketdyne solar power plant
• Molten salt thermal storage
• 550 to 300C across HX
• Normally Rankine cycle

• CO2 cycle performs poorly
• Cycle highly recuperated

• Wants reduced delta T
• Reduced delta T lowers 

storage & circulation 
effectiveness

• Added cost overcomes   
cycle efficiency 
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Turbomachinery Design: Summary of ResultsTurbomachinery Design: Summary of Results

• Baselined 300 Mwe LMR

• Established turbomachinery 
configuration and layout 
• Common shaft for all machines 

driven by power turbine
• Shaft rotation speed (3600 rpm) 

compatible with industrial size 
electrical generators

• Separate shaft seals on each 
machine

• Balanced axial thrust
• 3-D equipment drawings 

completed
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Turbomachinery Design: Summary of ResultsTurbomachinery Design: Summary of Results

• Identified preferred design 
approach for compressors
• Two stage centrifugal path 

selected for main compressor 
• Four stage centrifugal path 

selected for recompressor

• Identified preferred design 
approach for turbine
• Three stage axial path
• Reaction blading
• Fir tree and shrouded blades 

with dampers
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CO2 Main Compressor 1 Stg D=20.5 in. @ 7000 RPM Overall Eff 85%

CO2 ReComp Compressor 2 Stg D=25.5 in. @ 7000 RPM Overall Eff 85%

CO2 Main Compressor 2 Stg D=28.1 in. @ 3600 RPM Overall Eff 85%

CO2 ReComp Compressor 4 Stg D=35.0 in. @ 3600 RPM Overall Eff 85%

Best RMS Fit Roger's Impeller Only efficiency Test 

Predicted Impeller+Diffuser  efficiency From Rogers Impeller Only Test 
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Turbomachinery Shaft LayoutTurbomachinery Shaft Layout
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Heat Exchanger EvaluationHeat Exchanger Evaluation

• Basis: 300 Mwe LMR

• Evaluated heat exchanger for type (CHE  or STHE)
• Sodium to supercritical CO2 IHX
• High temperature SCO2 recuperator                               
• Low temperature SCO2 recuperator
• Pre-cooler SCO2 to water heat exchanger

• Developed 3 designs/concepts for IHX
• Compact heat exchangers (CHE)
• Shell and tube heat exchanger (STHE)

• Straight tube
• Coiled tube
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Heat Exchanger Evaluation ResultsHeat Exchanger Evaluation Results

• CO2 recuperators & pre-cooler
• Costs & configuration analyzed 
• CHE preferred for CO2 recuperators
• CHE pre-cooler very expensive

• Further evaluation needed
• IHX Comparison

• CHE
• Most compact
• Most expensive
• Thermal transient concern
• Sodium side plugging

• STHE 
• Lower cost by factor of almost 5
• Building cost higher
• Robust design
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Supercritical CO2 Turbomachinery 
Development Scenario/Schedule
Supercritical CO2 Turbomachinery 
Development Scenario/Schedule

Super subscale
testing

Single stage 
compressor

Task 20172016201520142013201220112010200920082007

Design          Fabricate             Test

Design                     Fabricate                 Operations

Confirm modeling and state properties 
at most challenging supercritical point

1/10th scale demonstrates high efficiency 
and confirms design of all components

Demonstration on prototype reactor 
• 300 to 600 Mwe SCO2 cycle
• Steam cycle maintained as backup

Prototype 
reactor on-
line

1/10th scale system test
Integrated cycle

Full scale demonstration
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The Rocketdyne Path Forward
Demonstrate the promise of supercritical CO2

The Rocketdyne Path Forward
Demonstrate the promise of supercritical CO2

• More detailed design & trade studies
• Bearings
• Disk / blade / crossover designs
• CFD analysis
• Re-look at multi-shaft configurations

• Dynamic system simulation analysis

• O&M and operability evaluations

• Implementation of development schedule

• Improve customer interest – Funding for path forward


