

Rocketdyne Development of the Supercritical CO₂ Power Conversion System

Michael McDowell Program Manager Reactor & Liquid Metal Systems Hamilton Sundstrand, Space Land & Sea-Rocketdyne

Rocketdyne Development of the Supercritical CO₂ Power Conversion System

- Rocketdyne Organization, Heritage & Elements
 Capabilities
- Supercritical CO₂ System & Equipment
 - System modeling / evaluation
 - Turbomachinery design
 - Heat exchanger evaluation
- Future Plans

United Technologies Corporation (UTC)

• \$42.7B Sales (2005)

- >200,000 employees
- Operating in 180 countries

Rocketdyne Alignment after UTC Purchase of Rocketdyne from Boeing (August 3, 2005)

Advanced Power Systems Aligned with Hamilton Sundstrand

Rocketdyne Energy Heritage

PWR Rocket / Space Program Heritage

Rocket Engine Competencies Applicable to Energy Markets

- High energy density combustion
 - 6000° F
 - 5000 psia
- Regenerative cooling
 - Low metal temperatures
 - High system efficiency
- High speed rotating equipment
 - 36,000 rpm

- Hydrogen technology
- Low cost < \$10 per kW thermal
 - Unique design capabilities
 - Advanced manufacturing processes
- Manufacturing and test
 - Capacity > 200 GW thermal per year
 - Rapid prototyping
 - Extensive test capability

Rocketdyne Development of the Supercritical CO₂ Power Conversion System

- Rocketdyne Organization, Heritage & Capabilities
- Supercritical CO₂ System & Equipment
 - System modeling / evaluation
 - Turbomachinery design
 - Heat exchanger evaluation
- Future Plans

Approach to Supercritical CO₂ System & Equipment Design

- Initiated technical evaluation in 2006 with internal funds
 - System modeling / evaluation
 - Turbomachinery conceptual design
 - Heat exchanger evaluation
 - Tools refinement CFD
- Small contract for Sandia Laboratory on turbomachinery & test concepts
- Using supercritical CO₂ system knowledge on advanced reactor concepts in 2007

System Modeling / Evaluation

- Verified preceding wisdom on CO₂ cycle
 - Literature review: MIT reports
 - Select 300 Mwe LMR as baseline
 - Power system modeling for efficiency
 - Evaluated alternate configurations
 - Defined parameters for turbomachinery & heat exchangers
- Extended power system modeling other power systems
 - VHTGR
 - Solar thermal power

Modeling Results: VHTGR Power System Study

Plot from: Driscoll, M.J., Report No: MIT-GFR-019, "Interim Topical Report Supercritical CO2 Plant Cost Assessment", September 2004, Center for Advanced Nuclear Energy Systems, MIT Nuclear Engineering Department

- Supercritical CO₂
- Helium Brayton
- Supercritical Steam Single Reheat
- Supercritical Steam Double Reheat
- * Subcritical Steam

ChemCad used to model supercritical CO₂ and helium Brayton cycles

GateCycle used to model steam cycles

Not every power system benefits from supercritical CO₂

- Rocketdyne solar power plant
 - Molten salt thermal storage
 - 550 to 300C across HX
 - Normally Rankine cycle
- CO₂ cycle performs poorly
 - Cycle highly recuperated
 - Wants reduced delta T
 - Reduced delta T lowers storage & circulation effectiveness
 - Added cost overcomes cycle efficiency

Solar Power Tower with Supercritical CO₂ Cycle

Turbomachinery Design: Summary of Results

- Baselined 300 Mwe LMR
- Established turbomachinery configuration and layout
 - Common shaft for all machines driven by power turbine
 - Shaft rotation speed (3600 rpm) compatible with industrial size electrical generators
 - Separate shaft seals on each machine
 - Balanced axial thrust
 - 3-D equipment drawings completed

Turbomachinery Design: Summary of Results

- Identified preferred design approach for compressors
 - Two stage centrifugal path selected for main compressor
 - Four stage centrifugal path selected for recompressor
- Identified preferred design approach for turbine
 - Three stage axial path
 - Reaction blading
 - Fir tree and shrouded blades with dampers

Turbomachinery Shaft Layout

Heat Exchanger Evaluation

- Basis: 300 Mwe LMR
- Evaluated heat exchanger for type (CHE or STHE)
 - Sodium to supercritical CO2 IHX
 - High temperature SCO2 recuperator
 - Low temperature SCO2 recuperator
 - Pre-cooler SCO2 to water heat exchanger
- Developed 3 designs/concepts for IHX
 - Compact heat exchangers (CHE)
 - Shell and tube heat exchanger (STHE)
 - Straight tube
 - Coiled tube

Heat Exchanger Evaluation Results

- CO₂ recuperators & pre-cooler
 - Costs & configuration analyzed
 - CHE preferred for CO₂ recuperators
 - CHE pre-cooler very expensive
 - Further evaluation needed
- IHX Comparison
 - CHE
 - Most compact
 - Most expensive
 - Thermal transient concern
 - Sodium side plugging
 - STHE
 - Lower cost by factor of almost 5
 - Building cost higher
 - Robust design

Rocketdyne Development of the Supercritical CO₂ Power Conversion System

- Rocketdyne Organization, Heritage & Capabilities
- Supercritical CO₂ System & Equipment
 - System modeling / evaluation
 - Turbomachinery design
 - Heat exchanger evaluation

Supercritical CO₂ Turbomachinery Development Scenario/Schedule

The Rocketdyne Path Forward Demonstrate the promise of supercritical CO₂

- More detailed design & trade studies
 - Bearings
 - Disk / blade / crossover designs
 - CFD analysis
 - Re-look at multi-shaft configurations
- Dynamic system simulation analysis
- O&M and operability evaluations
- Implementation of development schedule
- Improve customer interest Funding for path forward

